清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automating Abercrombie: Machine‐learning trademark distinctiveness

最佳显著性理论 商标 计算机科学 人工智能 业务 机器学习 自然语言处理 心理学 社会心理学 操作系统
作者
Shivam Adarsh,Elliott Ash,Stefan Bechtold,Barton Beebe,Jeanne C. Fromer
出处
期刊:Journal of Empirical Legal Studies [Wiley]
卷期号:21 (4): 826-860
标识
DOI:10.1111/jels.12398
摘要

Abstract Trademark law protects marks to enable firms to signal their products' qualities to consumers. To qualify for protection, a mark must be able to identify and distinguish goods. US courts typically locate a mark on a “spectrum of distinctiveness”—known as the Abercrombie spectrum—that categorizes marks as fanciful, arbitrary, or suggestive, and thus as “inherently distinctive,” or as descriptive or generic, and thus as not inherently distinctive. This article explores whether locating trademarks on the Abercrombie spectrum can be automated using current natural‐language processing techniques. Using about 1.5 million US trademark registrations between 2012 and 2019 as well as 2.2 million related USPTO office actions, the article presents a machine‐learning model that learns semantic features of trademark applications and predicts whether a mark is inherently distinctive. Our model can predict trademark actions with 86% accuracy overall, and it can identify subsets of trademark applications where it is highly certain in its predictions of distinctiveness. Using an eXplainable AI (XAI) algorithm, we further analyze which features in trademark applications drive our model's predictions. We then explore the practical and normative implications of our approach. On a practical level, we outline a decision‐support system that could, as a “robot trademark clerk,” assist trademark experts in their determination of a trademark's distinctiveness. Such a system could also help trademark experts understand which features of a trademark application contribute the most toward a trademark's distinctiveness. On a theoretical level, we discuss the normative limits of the Abercrombie spectrum and propose to move beyond Abercrombie for trademarks whose distinctiveness is uncertain. We discuss how machine‐learning projects in the law not only inform us about the aspects of the legal system that may be automated in the future, but also force us to tackle normative tradeoffs that may be invisible otherwise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分20
14秒前
22秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
44秒前
量子星尘发布了新的文献求助10
52秒前
57秒前
JDQW完成签到,获得积分10
59秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助AAA采纳,获得10
1分钟前
1分钟前
搞怪的白云完成签到 ,获得积分10
1分钟前
juju1234完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
从容的水壶完成签到 ,获得积分10
2分钟前
JDQW发布了新的文献求助20
2分钟前
QiaoHL完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
顷梦完成签到,获得积分10
2分钟前
广阔天地完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
A,w携念e行ོ完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
The Psychology of Advertising (5th edition) 500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865745
求助须知:如何正确求助?哪些是违规求助? 3408304
关于积分的说明 10657160
捐赠科研通 3132300
什么是DOI,文献DOI怎么找? 1727517
邀请新用户注册赠送积分活动 832351
科研通“疑难数据库(出版商)”最低求助积分说明 780242