Pore Engineering in Metal–Organic Frameworks for Enhanced Hydrocarbon Adsorption and Separation

碳氢化合物 吸附 金属有机骨架 分离(统计) 碳氢化合物混合物 化学工程 金属 废物管理 材料科学 环境化学 石油工程 环境科学 化学 地质学 有机化学 工程类 计算机科学 机器学习
作者
Xiao‐Jing Xie,Min-Yi Zhou,Heng Zeng,Weigang Lu,Dan Li
出处
期刊:Accounts of materials research [American Chemical Society]
标识
DOI:10.1021/accountsmr.4c00336
摘要

ConspectusThe separation and purification of hydrocarbons are crucially important processes in the petrochemical industry, as they are essential for producing high-quality chemicals and fuels. However, traditional thermal-driven separation practices, such as cryogenic distillation, are notoriously energy-intensive, accounting for a notable portion of the energy consumption in industrial operations. This has spurred the exploration and development of low-energy and sustainable alternative separation technologies, among which adsorption/desorption-based separation with porous materials has gained significant attention. Metal–organic frameworks (MOFs) are emerging as ideal porous materials for hydrocarbon separation due to their exceptional porosity and structural tunability. This Account delves into the latest advancements in microporous MOFs for hydrocarbon separation, categorizing them based on their pore structures: single array, tandem array, and orthogonal array. Single-array MOFs feature uniformly arranged channel-like pores along the axial direction, facilitating the incorporation of binding sites on the pore surfaces. One notable functional group used in these applications is open metal sites (OMSs), which can engage in strong metal-π interactions with unsaturated hydrocarbons such as acetylene. For example, JNU-1 demonstrates increased binding energy with the increasing pressure of acetylene due to the induce-fit effect, where framework contraction behavior is triggered by its OMSs. JNU-4 offers two binding sites per metal center for acetylene molecules, greatly improving the adsorption capacity. On the other hand, introducing low-polarity groups, as seen in JNU-6-CH3, can effectively enhance the separation performance in favor of alkanes while maintaining structural integrity under humid conditions. Another methyl group-modified MOF, JNU-5-CH3, exhibits an acetylene-triggered gate-opening effect due to the multiple supramolecular interactions with acetylene. Tandem-array MOFs provide enhanced selectivity and adsorption capacity through the interconnection of spacious cavities with narrow apertures. For instance, JNU-2 with pore-channel interconnected structure exhibits improved separation efficiency for C2H6/C2H4 and hexane isomers. The slim channels connecting the large cavities act as screening sites for matching-sized molecules to pass through, while the large cavities function as storage sites for large adsorption capacity. Orthogonal-array MOFs, like JNU-3a, feature one-dimensional (1D) channels that enable rapid diffusion, complemented by molecular pockets on both sides that facilitate selective recognition. The dynamic "gourd-shaped" opening of the pocket demonstrates notable adaptability when interacting with different hydrocarbons, allowing for sieving-like behavior in the separation of propylene/propane, as well as efficient separation of ethylene from its mixtures with alkynes of various sizes. Overall, the designability and tunability of MOF pore structures make them promising candidates for effectively discriminating targeted molecules from multicomponent mixtures, offering energy-efficient solutions for challenging industrial separations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chengche发布了新的文献求助10
刚刚
YIFEI发布了新的文献求助10
2秒前
小龅牙吖发布了新的文献求助10
3秒前
ZIS完成签到,获得积分10
4秒前
乐乐应助elous采纳,获得10
6秒前
longlian57完成签到,获得积分10
8秒前
11秒前
嗯哼完成签到 ,获得积分10
13秒前
科研通AI5应助hulala采纳,获得30
15秒前
17秒前
TK完成签到 ,获得积分0
17秒前
SciGPT应助FireRain采纳,获得10
21秒前
积极天思完成签到 ,获得积分10
21秒前
fkdbdy发布了新的文献求助10
22秒前
24秒前
余味应助nini采纳,获得10
31秒前
32秒前
啊强完成签到 ,获得积分10
33秒前
鹏笑完成签到,获得积分10
33秒前
33秒前
机智友蕊完成签到 ,获得积分10
34秒前
阿秋秋秋完成签到 ,获得积分10
34秒前
35秒前
36秒前
yuaner发布了新的文献求助10
36秒前
小精灵发布了新的文献求助10
37秒前
FashionBoy应助开心的帽子采纳,获得10
37秒前
38秒前
dy发布了新的文献求助10
41秒前
42秒前
nnn发布了新的文献求助10
42秒前
43秒前
研友_VZG7GZ应助小精灵采纳,获得10
46秒前
完美世界应助科研通管家采纳,获得10
46秒前
Orange应助科研通管家采纳,获得10
47秒前
哎呦喂喂应助科研通管家采纳,获得10
47秒前
sss发布了新的文献求助200
47秒前
英俊的铭应助科研通管家采纳,获得10
47秒前
47秒前
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385