FedPDN: Personalized Federated Learning with Inter-class Similarity Constraint for Medical Image Classification through Parameter Decoupling

计算机科学 组分(热力学) 机器学习 班级(哲学) 人工智能 解耦(概率) 数据挖掘 控制工程 工程类 物理 热力学
作者
Peishan Wei,Tianwei Zhou,Weide Liu,Jie Du,Tianfu Wang,Guanghui Yue
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tim.2025.3527597
摘要

Data heterogeneity across medical centers, resulting in a coupling of universal information for classification tasks and personalized information for private dataset within local models, is still a difficult challenge in Personalized Federated Learning (PFL). Moreover, the high inter-class similarity in the private datasets affects the performance of the local models. Different from pervious works that focus on personalized aggregation or personalized adjusting the global model, we introduce the concept of decoupling universal and personalized information in local models and propose a novel PFL framework for medical image classification in this paper. Specifically, we propose a decoupling strategy at the client side to efficiently utilize universal and personalized information of the local model to solve data heterogeneity. This strategy decouples the parameters of the local models into two components based on Singular Value Decomposition (SVD), namely the universal component and personalized component. The former contains universal information for the classification task, while the later only includes the personalized information for the client dataset. During the training process of PFL, only the universal component is transmitted between the server and clients, which makes our framework has ability to save transmission resource and protect personalized information. To address the challenge of high inter-class similarity in private dataset, during the network training in local clients, we apply an Inter-class Separability (IS) loss to adaptively enlarge the angle between features of different classes in the feature space, thereby reducing the inter-class similarity. Extensive experiments were conducted on a dermoscopic dataset and a glaucoma dataset, achieving accuracy rates of 87.16% and 84.64%, respectively. The results demonstrate that our proposed method outperforms nine advanced methods and achieves state-of-the-art results in the medical image classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助一碗鱼采纳,获得10
1秒前
1秒前
mhb发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
tnokp完成签到,获得积分10
4秒前
ZSJ完成签到,获得积分10
5秒前
5秒前
科研通AI6应助122采纳,获得10
6秒前
吴彦祖发布了新的文献求助10
7秒前
悦耳向露发布了新的文献求助10
7秒前
TZZZ发布了新的文献求助10
7秒前
Cope发布了新的文献求助30
8秒前
yyydd发布了新的文献求助10
8秒前
FFF完成签到,获得积分10
8秒前
星辰大海应助专注的背包采纳,获得10
9秒前
自行车v完成签到,获得积分10
9秒前
jzh发布了新的文献求助10
10秒前
dyx发布了新的文献求助10
11秒前
知然完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
lz完成签到 ,获得积分10
13秒前
一碗鱼发布了新的文献求助10
15秒前
NexusExplorer应助发光且犯二采纳,获得10
15秒前
彭于晏应助dildil采纳,获得10
15秒前
15秒前
王倩驳回了打打应助
15秒前
16秒前
ljl关闭了ljl文献求助
16秒前
liu完成签到,获得积分20
16秒前
霸气雯完成签到,获得积分10
18秒前
丘比特应助唯雷采纳,获得10
18秒前
yyydd完成签到,获得积分20
19秒前
wb发布了新的文献求助10
19秒前
19秒前
Nicole完成签到 ,获得积分10
22秒前
花花花花发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581607
关于积分的说明 14381381
捐赠科研通 4510179
什么是DOI,文献DOI怎么找? 2471686
邀请新用户注册赠送积分活动 1458093
关于科研通互助平台的介绍 1431812