A numerical simulation of a novel self-powered implantable respiration sensor based on a triboelectric nanogenerator for medical applications

摩擦电效应 纳米发生器 材料科学 光电子学 纳米技术 复合材料 压电
作者
Samaneh Mozaffari,Mohammad Reza Nateghi
出处
期刊:Physica Scripta [IOP Publishing]
标识
DOI:10.1088/1402-4896/ad96f4
摘要

Abstract The breathing rate is utilized as a reliable indicator in many cases to predict and diagnose respiratory diseases as well as the respiratory dysfunction caused by diseases such as the cystic fibrosis. Therefore, in this study, a self-powered implantable respiration sensor based on a contact-separation mode triboelectric nanogenerator (TENG) was designed to monitor the respiratory rates by sensing the variation of the diaphragm muscle. For this purpose, a polytetrafluoroethylene film with a thickness of 160 μm and a nylon film with a thickness of 180 μm are employed as the negative and positive triboelectric materials. Two copper layer each with a thickness of 100 μm are placed on the outer surfaces of the triboelectric layers as the conducting electrodes. In order to uniformly deform the moving plate of the TENG, it is rigidly attached to the center of the diaphragm through a silicon mechanical coupling element with dimensions of 80 x 80 μm2. The pressure caused by breathing on the diaphragm muscle, which is in the range of 266-666 Pa, is applied to the center of the device diaphragm. The effect of various parameters including external pressure, frequency and surface charge density on the output performance of the device is also investigated. It is evident that higher external pressure results in intensive deformations of the moving plate of the TENG, leading to a more significant energy conversion efficiency of the device. Similarly, increasing the surface charge density causes an increase in all electrical output parameters. Moreover, the device achieves an output power of 0.209 nW at a load resistance of 20 GΩ by applying a pressure of 666 Pa at a frequency of 0.24 Hz. All the results demonstrate the potential of the new proposed sensor for detecting and monitoring real-time respiratory rates with high sensitivity and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YOLO完成签到,获得积分10
刚刚
奋斗的鞅发布了新的文献求助10
刚刚
HS完成签到,获得积分10
刚刚
123发布了新的文献求助10
刚刚
小蘑菇应助机灵雨采纳,获得10
1秒前
yalin完成签到,获得积分10
2秒前
DENG发布了新的文献求助10
3秒前
4秒前
javaxixi发布了新的文献求助10
5秒前
6秒前
9秒前
9秒前
感动归尘完成签到,获得积分10
9秒前
Aaron发布了新的文献求助10
10秒前
奋斗的蜗牛应助激流勇进采纳,获得10
10秒前
11发布了新的文献求助10
12秒前
张泽崇发布了新的文献求助10
15秒前
CodeCraft应助xixihaha采纳,获得10
16秒前
华仔应助Ab采纳,获得10
17秒前
18秒前
香蕉觅云应助XMUh采纳,获得20
21秒前
javaxixi完成签到,获得积分20
22秒前
22秒前
机灵雨发布了新的文献求助10
23秒前
26秒前
烟花应助Aaron采纳,获得10
27秒前
28秒前
28秒前
英俊的铭应助水灯霖采纳,获得10
31秒前
王婧萱萱萱完成签到 ,获得积分10
31秒前
孙策完成签到,获得积分10
33秒前
33秒前
丘比特应助英勇的寒蕾采纳,获得10
34秒前
34秒前
醒了没醒醒完成签到,获得积分10
35秒前
hhh完成签到,获得积分10
36秒前
38秒前
冰魂应助shangguanyilin采纳,获得50
38秒前
39秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782142
求助须知:如何正确求助?哪些是违规求助? 3327581
关于积分的说明 10232377
捐赠科研通 3042529
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758842