Optimization of fermentation medium components by response surface methodology (RSM) and artificial neural network hybrid with genetic algorithm (ANN-GA) for lipase production by Burkholderia cenocepacia ST8 using used automotive engine oil as substrate

响应面法 中心组合设计 脂肪酶 食品科学 发酵 数学 生物技术 生物 化学 色谱法 生物化学
作者
Hui-Lane Lau,Fadzlie Wong Faizal Wong,Raja Noor Zaliha Raja Abd Rahman,Mohd Shamzi Mohamed,Arbakariya Ariff,Siew-Ling Hii
出处
期刊:Biocatalysis and agricultural biotechnology [Elsevier BV]
卷期号:50: 102696-102696 被引量:34
标识
DOI:10.1016/j.bcab.2023.102696
摘要

Bioconversion of used automotive engine oil (UEO) into lipase was conducted via submerged fermentation by Burkholderia cenocepacia ST8, as a strategy for value-added product generation and waste management. Response surface methodology (RSM) and artificial neural network hybrid with genetic algorithm (ANN-GA) were employed to optimize the fermentation medium for enhancing extracellular lipase production by B. cenocepacia ST8. Employing a four-factor-five-level central composite rotatable experimental design (CCRD), a reduced quartic polynomial RSM model and ANN model (4-4-1) trained using Bayesian Regularization were developed to attain the optimized fermentation medium for maximum level of lipase production. The RSM model predicted the following as the optimum media constituents: 2.28% v/v of Tween 80, 2.26% v/v of UEO, 0.79% w/v of nutrient broth, and 1.33% w/v of gum arabic, with an actual lipase yield of 216 U/mL. While, ANN-GA predicted the optimum media constituents to be 3% v/v of Tween 80, 3% v/v of UEO, 0.72% w/v of nutrient broth, and 3.38% w/v of gum arabic, with actual lipase yield of 225 U/mL. In comparison to the unoptimized medium, optimized RSM and ANN-GA systems both demonstrated a 1.6-fold increment in lipase production. Tween 80 and nutrient broth concentrations were the most important variables influencing the lipase production. The findings of this study indicated that the ANN-GA and RSM could be useful for effective optimization of the fermentation medium for enzyme production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruby发布了新的文献求助10
1秒前
小张发布了新的文献求助10
1秒前
2秒前
2秒前
Hollow发布了新的文献求助10
3秒前
钝感力发布了新的文献求助10
3秒前
4秒前
Ffffff发布了新的文献求助10
4秒前
YXT1998发布了新的文献求助20
5秒前
小兵发布了新的文献求助10
6秒前
Akim应助组织因子采纳,获得20
6秒前
ATM发布了新的文献求助10
6秒前
StayGolDay完成签到,获得积分10
7秒前
zetal完成签到,获得积分20
8秒前
9秒前
10秒前
10秒前
LionontheMars发布了新的文献求助20
11秒前
命运的X号完成签到,获得积分20
11秒前
钝感力完成签到,获得积分10
13秒前
古月发布了新的文献求助10
14秒前
zetal发布了新的文献求助10
14秒前
命运的X号发布了新的文献求助10
14秒前
sunflower发布了新的文献求助10
15秒前
15秒前
qqy完成签到,获得积分10
16秒前
yue完成签到,获得积分10
17秒前
大个应助ATM采纳,获得10
17秒前
善学以致用应助zdy采纳,获得30
17秒前
18秒前
orixero应助科研狗采纳,获得10
18秒前
孙二二发布了新的文献求助10
19秒前
20秒前
甜蜜的大象完成签到 ,获得积分10
21秒前
数学情缘发布了新的文献求助10
22秒前
没头脑完成签到 ,获得积分10
23秒前
ruby完成签到,获得积分10
24秒前
小燕子完成签到,获得积分10
25秒前
lululu完成签到,获得积分10
25秒前
现代的访曼应助Hollow采纳,获得20
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956027
求助须知:如何正确求助?哪些是违规求助? 3502176
关于积分的说明 11106477
捐赠科研通 3232588
什么是DOI,文献DOI怎么找? 1787020
邀请新用户注册赠送积分活动 870340
科研通“疑难数据库(出版商)”最低求助积分说明 801972