Recent advances of target tracking applications in aquaculture with emphasis on fish

跟踪(教育) 计算机科学 人工智能 水产养殖 跟踪系统 计算机视觉 机器学习 渔业 卡尔曼滤波器 生物 心理学 教育学
作者
Yupeng Mei,Boyang Sun,Daoliang Li,Huihui Yu,Hanxiang Qin,Huihui Liu,Ni Yan,Yingyi Chen
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:201: 107335-107335 被引量:30
标识
DOI:10.1016/j.compag.2022.107335
摘要

In aquaculture, Behavioral monitoring of fish contributes to scientific management and reduces the threat of loss from disease and stress. Fish tracking technology plays an important role in behavior monitoring. It can pay attention to the movement of fish at any time and discover various abnormal behaviors in time. As a non-invasive method, computer vision is a powerful tool for fish tracking.. Its tracking principle is to establish the relationship between fish positions in a continuous video sequence and get the complete movement trajectory of the fish. Nevertheless, computer vision modeling used for fish tracking is riddled with many challenges, such as fish deformation, frequent occlusion, scale change, etc. Around these difficult issues, many scholars have carried out the research. In this paper, we review the progress of tracking algorithms in fish research. Then, methods for fish tracking before deep learning are introduced. Further, a detailed discussion of fish tracking methods employing deep learning such as tracking-by-detection, deep features combined with correlation filtering methods, Siamese networks, etc. Furthermore, we summarize datasets that can be used as fish tracking and give evaluation metrics in target tracking algorithms. In addition, experimental data of several mainstream tracking algorithms on a public tracking dataset are given. Finally, we discuss the outstanding findings and look forward to the fish tracking method combined with Transformer, aiming to provide a reference for accelerating the promotion of smart fishery and precision farming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的凌兰完成签到 ,获得积分10
刚刚
夜白应助科研通管家采纳,获得20
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
4秒前
缥缈纲应助科研通管家采纳,获得10
4秒前
缥缈纲应助科研通管家采纳,获得30
4秒前
可口可乐发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
夜白应助科研通管家采纳,获得30
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
6秒前
zhangzi完成签到,获得积分10
7秒前
CipherSage应助YangSY采纳,获得10
8秒前
Young完成签到,获得积分10
9秒前
小写发布了新的文献求助10
11秒前
彭于晏应助Orchid采纳,获得10
13秒前
波里舞完成签到 ,获得积分10
14秒前
Hiram完成签到,获得积分10
15秒前
16秒前
Singularity应助lizhiqian2024采纳,获得10
17秒前
18秒前
19秒前
夏天呀完成签到,获得积分10
19秒前
fang完成签到,获得积分10
20秒前
Zhou发布了新的文献求助30
22秒前
眯眯眼的鞋垫完成签到,获得积分10
22秒前
23秒前
Qyyy发布了新的文献求助10
25秒前
www完成签到 ,获得积分10
27秒前
伊yan完成签到 ,获得积分10
27秒前
TBH完成签到,获得积分10
29秒前
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726