Deep learning for anterior segment OCT angiography automated denoising and vascular quantitative measurement

小梁切除术 人工智能 青光眼 降噪 光学相干层析成像 计算机科学 眼压 峰值信噪比 光学相干断层摄影术 医学 眼科 图像质量 计算机视觉 生物医学工程 图像(数学)
作者
Man Luo,Zhiling Xu,Zehua Ye,Zhendong Liang,Hui Xiao,Yiqing Li,Zhidong Li,Yingting Zhu,Yonghong He,Yehong Zhuo
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:83: 104660-104660 被引量:6
标识
DOI:10.1016/j.bspc.2023.104660
摘要

Anterior segment optical coherence tomography angiography (AS-OCTA) has superior advantages in objective assessment of anterior segment (AS) vessels. Resolving noise interference in image is necessary to optimize the application of AS-OCTA. The study aimed to explore an automated denoising algorithm based on deep learning (DL). The algorithm was built through 21,000 pairs of images, and tested with 30 healthy eyes, 47 preoperative eyes with glaucoma, and 30 eyes undergone trabeculectomy (Trab). The real pure noise images were acquired by artificial simulation of eye movements through AS-OCTA. The algorithm included deep convolutional generative adversarial network (DCGAN), Res-Unet and Otsu. ImageJ software quantified vessel density (VD) and vessel diameter index (VDI). Images after noise reduction had relatively satisfactory peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Indiana bleb appearance grading scale (IBAGS), Kronfeld grading system (KGS) and intraocular pressure (IOP) used for Trab analysis. The DL method was superior to the conventional methods (PSNR = 16.45, SSIM = 0.52, both P < 0.001), and the denoising reduced measurement error of VD and VDI (P < 0.001). The denoising methods enabled the differentiation of V2 in IBAGS from V0 and V1 (P < 0.001) or that of II in KGS from I (P = 0.020). VD and VDI could better reflect IOP after noise reduction (R2 increased from 0.25 to 0.63, 0.14 to 0.41, both P < 0.001). Our research offered a DL denoising algorithm which improved the quality of AS-OCTA and the accuracy of AS vessel analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助张老师采纳,获得10
刚刚
尚影芷发布了新的文献求助10
1秒前
斯文败类应助Joeswith采纳,获得10
1秒前
doux发布了新的文献求助10
1秒前
怕黑黑猫发布了新的文献求助10
1秒前
李健的小迷弟应助yusong采纳,获得10
2秒前
lijunying发布了新的文献求助10
2秒前
星际帅帅完成签到,获得积分10
3秒前
研究牛牛完成签到 ,获得积分10
4秒前
5秒前
糖糖糖唐发布了新的文献求助10
6秒前
挈宇完成签到,获得积分10
6秒前
8秒前
10秒前
10秒前
彰化完成签到,获得积分10
12秒前
月亮发布了新的文献求助10
13秒前
我是老大应助lijunying采纳,获得30
13秒前
13秒前
yusong发布了新的文献求助10
14秒前
华仔应助虚幻沛菡采纳,获得10
14秒前
隐形曼青应助健忘雁荷采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得10
17秒前
SYLH应助科研通管家采纳,获得20
17秒前
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
Orange应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
张老师发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840171
求助须知:如何正确求助?哪些是违规求助? 3382372
关于积分的说明 10522936
捐赠科研通 3101820
什么是DOI,文献DOI怎么找? 1708417
邀请新用户注册赠送积分活动 822434
科研通“疑难数据库(出版商)”最低求助积分说明 773317