Development and validation of an EUS-based nomogram for prediction of the malignant potential in gastrointestinal stromal tumors

列线图 医学 恶性肿瘤 主旨 放射科 接收机工作特性 肿瘤科 内科学 间质细胞
作者
Li Liu,Jing Chen,Jing Shan,Xiaobin Sun
出处
期刊:Scandinavian Journal of Gastroenterology [Taylor & Francis]
卷期号:58 (7): 830-837 被引量:3
标识
DOI:10.1080/00365521.2023.2175179
摘要

Background Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal (GI) tract that require different therapeutic interventions according to the malignancy. We aim to develop and validate a EUS (endoscopic ultrasonography)-based nomogram to predict malignant potential in patients with GIST.Methods 258 patients with pathological diagnosis of gastric GISTs were enrolled retrospectively in our hospital from June 2015 to October 2020. Patients were randomly divided into the development cohort (DC, n = 179) and the validation cohort (VC, n = 79). We established a nomogram using lasso regression based on DC data. The predictive effectiveness of the nomogram was evaluated by the area under the receiver operating characteristic curve (AUC). Through bootstrapping, a consistency index (C-index) and calibration chart are developed to evaluate the reliability and accuracy of the nomogram.Results A total of 192 patients with low-malignant potential (very low and low-risk) GISTs and 66 patients with high-malignant potential (intermediate and high-risk) GISTs were included in this study. The nomogram was constructed with the following 6 EUS indicators: ulceration, hemorrhage, tumor shape, irregular border, transverse diameter, and necrosis. Internal and external validation showed that the nomogram had a good ability to predict the malignant potential of GISTs (AUC = 0.881 and 0.908, respectively). The calibration curve shows that the nomogram has a good agreement between predicted and actual probabilities for differentiating GISTs malignancy (C-index = 0.868 and 0.907, respectively).Conclusions This study developed and verified a EUS-based nomogram, which can effectively predict the malignant potential of patients with gastric GISTs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ubiquitin完成签到,获得积分20
3秒前
艾欣发布了新的文献求助10
3秒前
4秒前
nozero应助raemourn采纳,获得50
5秒前
俊逸的奇异果完成签到,获得积分20
5秒前
5秒前
清风完成签到,获得积分10
6秒前
8秒前
点点完成签到 ,获得积分10
8秒前
frulee发布了新的文献求助30
8秒前
科研通AI5应助elysia采纳,获得10
9秒前
RicTcuceN_发布了新的文献求助10
10秒前
10秒前
Zqq完成签到,获得积分10
11秒前
ly完成签到,获得积分10
11秒前
12秒前
13秒前
gao发布了新的文献求助10
13秒前
14秒前
14秒前
RicTcuceN_完成签到,获得积分10
15秒前
CNJX完成签到,获得积分10
16秒前
WX完成签到,获得积分10
16秒前
黄建雨发布了新的文献求助10
16秒前
科研通AI5应助路十八采纳,获得10
16秒前
李健应助CC采纳,获得10
17秒前
lwtsy完成签到,获得积分10
19秒前
Gangster发布了新的文献求助10
19秒前
kk发布了新的文献求助100
19秒前
SAODEN完成签到,获得积分10
20秒前
20秒前
无花果应助好运6连采纳,获得10
20秒前
JamesPei应助点点采纳,获得10
21秒前
22秒前
Yueze完成签到,获得积分10
22秒前
优美的可乐完成签到,获得积分10
22秒前
23秒前
23秒前
科研通AI5应助smj1029采纳,获得10
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174