Prospective Real-Time Validation of a Lung Ultrasound Deep Learning Model in the ICU

医学 金标准(测试) 前瞻性队列研究 重症监护 病危 观察研究 急诊医学 重症监护室 重症监护医学 放射科 内科学
作者
Chintan Dave,Derek Wu,Jared Tschirhart,Delaney Smith,Blake VanBerlo,Jason Deglint,Faraz Ali,Rushil Chaudhary,Bennett VanBerlo,Alex Ford,Marwan A. Rahman,Joseph McCauley,Benjamin Wu,Jordan Ho,Brian Li,Robert Arntfield
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (2): 301-309 被引量:4
标识
DOI:10.1097/ccm.0000000000005759
摘要

OBJECTIVES: To evaluate the accuracy of a bedside, real-time deployment of a deep learning (DL) model capable of distinguishing between normal (A line pattern) and abnormal (B line pattern) lung parenchyma on lung ultrasound (LUS) in critically ill patients. DESIGN: Prospective, observational study evaluating the performance of a previously trained LUS DL model. Enrolled patients received a LUS examination with simultaneous DL model predictions using a portable device. Clip-level model predictions were analyzed and compared with blinded expert review for A versus B line pattern. Four prediction thresholding approaches were applied to maximize model sensitivity and specificity at bedside. SETTING: Academic ICU. PATIENTS: One-hundred critically ill patients admitted to ICU, receiving oxygen therapy, and eligible for respiratory imaging were included. Patients who were unstable or could not undergo an LUS examination were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 100 unique ICU patients (400 clips) were enrolled from two tertiary-care sites. Fifty-six patients were mechanically ventilated. When compared with gold standard expert annotation, the real-time inference yielded an accuracy of 95%, sensitivity of 93%, and specificity of 96% for identification of the B line pattern. Varying prediction thresholds showed that real-time modification of sensitivity and specificity according to clinical priorities is possible. CONCLUSIONS: A previously validated DL classification model performs equally well in real-time at the bedside when platformed on a portable device. As the first study to test the feasibility and performance of a DL classification model for LUS in a dedicated ICU environment, our results justify further inquiry into the impact of employing real-time automation of medical imaging into the care of the critically ill.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
121发布了新的文献求助10
1秒前
希望天下0贩的0应助宝玉采纳,获得10
1秒前
温暖听安应助XLeft采纳,获得10
1秒前
2秒前
2秒前
si发布了新的文献求助10
3秒前
4秒前
4秒前
Peng发布了新的文献求助10
5秒前
121完成签到,获得积分10
7秒前
ding应助Dream采纳,获得10
7秒前
8秒前
8秒前
lalala发布了新的文献求助10
8秒前
余姚发布了新的文献求助10
10秒前
qw1发布了新的文献求助10
10秒前
yyj完成签到,获得积分10
11秒前
清欢应助郭志伟采纳,获得10
12秒前
大个应助迷路幻柏采纳,获得10
14秒前
科研通AI6应助XIAOBAI采纳,获得10
15秒前
科研加油发布了新的文献求助20
15秒前
挽棠完成签到,获得积分10
16秒前
17秒前
FashionBoy应助乐满采纳,获得10
17秒前
研友_VZG7GZ应助valora采纳,获得10
18秒前
18秒前
优秀星星完成签到,获得积分10
19秒前
乘风完成签到,获得积分10
20秒前
20秒前
机智的凡梦完成签到,获得积分10
20秒前
蔡静雯popo发布了新的文献求助10
21秒前
21秒前
qiuling发布了新的文献求助30
22秒前
风中汽车发布了新的文献求助30
23秒前
汉堡包应助KT酱采纳,获得10
24秒前
连翘发布了新的文献求助10
24秒前
hb发布了新的文献求助10
26秒前
26秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
The Effects of Valsartan and Amlodipine on the Levels of Irisin, Adropin, and Perilipin 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4337157
求助须知:如何正确求助?哪些是违规求助? 3847178
关于积分的说明 12015391
捐赠科研通 3487963
什么是DOI,文献DOI怎么找? 1914486
邀请新用户注册赠送积分活动 957407
科研通“疑难数据库(出版商)”最低求助积分说明 857845