Prospective Real-Time Validation of a Lung Ultrasound Deep Learning Model in the ICU

医学 金标准(测试) 前瞻性队列研究 重症监护 病危 观察研究 急诊医学 重症监护室 重症监护医学 放射科 内科学
作者
Chintan Dave,Derek Wu,Jared Tschirhart,Delaney Smith,Blake VanBerlo,Jason Deglint,Faraz Ali,Rushil Chaudhary,Bennett VanBerlo,Alex Ford,Marwan A. Rahman,Joseph McCauley,Benjamin Wu,Jordan Ho,Brian Li,Robert Arntfield
出处
期刊:Critical Care Medicine [Lippincott Williams & Wilkins]
卷期号:51 (2): 301-309 被引量:4
标识
DOI:10.1097/ccm.0000000000005759
摘要

OBJECTIVES: To evaluate the accuracy of a bedside, real-time deployment of a deep learning (DL) model capable of distinguishing between normal (A line pattern) and abnormal (B line pattern) lung parenchyma on lung ultrasound (LUS) in critically ill patients. DESIGN: Prospective, observational study evaluating the performance of a previously trained LUS DL model. Enrolled patients received a LUS examination with simultaneous DL model predictions using a portable device. Clip-level model predictions were analyzed and compared with blinded expert review for A versus B line pattern. Four prediction thresholding approaches were applied to maximize model sensitivity and specificity at bedside. SETTING: Academic ICU. PATIENTS: One-hundred critically ill patients admitted to ICU, receiving oxygen therapy, and eligible for respiratory imaging were included. Patients who were unstable or could not undergo an LUS examination were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A total of 100 unique ICU patients (400 clips) were enrolled from two tertiary-care sites. Fifty-six patients were mechanically ventilated. When compared with gold standard expert annotation, the real-time inference yielded an accuracy of 95%, sensitivity of 93%, and specificity of 96% for identification of the B line pattern. Varying prediction thresholds showed that real-time modification of sensitivity and specificity according to clinical priorities is possible. CONCLUSIONS: A previously validated DL classification model performs equally well in real-time at the bedside when platformed on a portable device. As the first study to test the feasibility and performance of a DL classification model for LUS in a dedicated ICU environment, our results justify further inquiry into the impact of employing real-time automation of medical imaging into the care of the critically ill.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可发布了新的文献求助10
刚刚
ruby发布了新的文献求助10
刚刚
范笑佳完成签到,获得积分10
1秒前
ooo完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
小李完成签到,获得积分10
3秒前
3秒前
Small-violet完成签到,获得积分10
4秒前
4秒前
4秒前
yu_jy发布了新的文献求助10
4秒前
王世缘发布了新的文献求助10
5秒前
冰下之鲸完成签到,获得积分10
5秒前
pluto应助婷婷采纳,获得10
5秒前
邹鹏发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
连难胜发布了新的文献求助10
6秒前
宇文数学完成签到,获得积分10
7秒前
传奇3应助smm采纳,获得10
8秒前
LLHH发布了新的文献求助10
8秒前
8秒前
沉静万言完成签到,获得积分10
9秒前
9秒前
9秒前
鸢尾蓝完成签到,获得积分10
10秒前
10秒前
可可完成签到,获得积分10
10秒前
11秒前
11秒前
坚强的严青完成签到,获得积分10
12秒前
12秒前
邹鹏完成签到,获得积分10
13秒前
哇哦哦发布了新的文献求助10
13秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876569
求助须知:如何正确求助?哪些是违规求助? 3419164
关于积分的说明 10712308
捐赠科研通 3143850
什么是DOI,文献DOI怎么找? 1734608
邀请新用户注册赠送积分活动 836908
科研通“疑难数据库(出版商)”最低求助积分说明 782884