清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling and detection of invasive trees using UAV image and machine learning in a subtropical forest in Brazil

随机森林 支持向量机 人工智能 计算机科学 机器学习 遥感 环境科学 地理
作者
Sally Deborah Pereira da Silva,Fernando Coelho Eugênio,Roberta Aparecida Fantinel,Lúcio de Paula Amaral,Alexandre Rosa dos Santos,Caroline Lorenci Mallmann,Fernanda Dias dos Santos,Rudiney Soares Pereira,Régis Ruoso
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:74: 101989-101989 被引量:31
标识
DOI:10.1016/j.ecoinf.2023.101989
摘要

Protected areas play an extremely important role in the conservation of global biodiversity. However, these areas are subject to the introduction of invasive alien species (IAS), which cause damage to native environments. The present study aimed to use images obtained by Unmanned Aerial Vehicles (UAVs) combined with machine learning (ML) algorithms to identify the IAS Hovenia dulcis in a Conservation Unit in southern Brazil. Field data were obtained in a sample area, where the floristic survey of the H. dulcis species was carried out. To obtain remote data, a UAV with a built-in RGB sensor was used. Subsequently, the images were processed for orthomosaic generation and the spatial distribution of the inventoried species, based on manual photointerpretation. Furthermore, in the supervised classification process, four classes of interest were defined: H. dulcis, similar species, shade, and other species. The process involved two approaches (pixel-based - PB and object-based image analysis - OBIA) and two ML algorithms were compared (Random Forest - RF and Support Vector Machine - SVM). Samples were separated into 90% for training and 10% for model validation. For performance analysis, overall accuracy (OA) and Kappa index metrics were calculated. The results show that the RF algorithm in the PB approach had the best performance in the classification of the IAS H. dulcis, presenting a kappa of 0.87 and OA of 91.5%, in the training data set and 90.91% of success in the model validation dataset. Our study demonstrated to be able to reach the results to respond to the raised hypotheses. Furthermore, the UAV-RGB data combined with ML are highly accurate to identify H. dulcis in relation to the other species that make up the forest stratum of the study area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖坚定完成签到 ,获得积分10
27秒前
30秒前
Tethys发布了新的文献求助10
36秒前
呆萌的语芹完成签到,获得积分10
45秒前
蚂蚁踢大象完成签到 ,获得积分10
59秒前
大胆的小懒猪完成签到 ,获得积分10
1分钟前
胃是内分泌器官完成签到,获得积分10
1分钟前
希望天下0贩的0应助automan采纳,获得10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
ding应助细心的语蓉采纳,获得30
1分钟前
1分钟前
1分钟前
automan发布了新的文献求助10
1分钟前
1分钟前
automan完成签到,获得积分10
1分钟前
桐桐应助火焰向上采纳,获得10
2分钟前
zzhui完成签到,获得积分10
2分钟前
2分钟前
nihaoxjm发布了新的文献求助10
2分钟前
李志全完成签到 ,获得积分10
3分钟前
老实皮卡丘完成签到 ,获得积分10
3分钟前
雪白的面包完成签到 ,获得积分10
3分钟前
小西完成签到 ,获得积分10
3分钟前
space完成签到 ,获得积分10
3分钟前
3分钟前
SciGPT应助细心的语蓉采纳,获得10
3分钟前
3分钟前
ENIX完成签到,获得积分10
3分钟前
3分钟前
3分钟前
善良的剑通完成签到 ,获得积分10
3分钟前
3分钟前
zty568发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
庄怀逸完成签到 ,获得积分10
4分钟前
Guo完成签到 ,获得积分10
4分钟前
旅程完成签到 ,获得积分10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784818
求助须知:如何正确求助?哪些是违规求助? 3330065
关于积分的说明 10244270
捐赠科研通 3045410
什么是DOI,文献DOI怎么找? 1671678
邀请新用户注册赠送积分活动 800597
科研通“疑难数据库(出版商)”最低求助积分说明 759524