清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A data‐driven intravoxel mean diffusivities distribution approach for molecular classifications and MIB‐1 prediction of gliomas

体素 盒内非相干运动 胶质瘤 磁共振成像 可靠性(半导体) 核医学 热扩散率 峰度 计算机科学 核磁共振 磁共振弥散成像 物理 数学 医学 人工智能 放射科 统计 功率(物理) 癌症研究 量子力学
作者
Junqi Xu,Yaru Sheng,Hao Li,Zidong Yang,Yan Ren,He Wang
出处
期刊:Medical Physics [Wiley]
卷期号:51 (10): 7332-7344 被引量:1
标识
DOI:10.1002/mp.17280
摘要

Abstract Background Measuring non‐parametric intravoxel mean diffusivity distributions (MDDs) using magnetic resonance imaging (MRI) is a sensitive method for detecting intracellular diffusivity changes during physiological alterations. Histological and molecular glioma classifications are essential for prognosis and treatment, with distinct water diffusion dynamics among subtypes. Purpose We developed a data‐driven approach using a fully connected network (FCN) to enhance the speed and stability of calculating MDDs across varying SNRs, enable tumor microstructural mapping, and test its reliability in identifying MIB‐1 labeling index (LI) levels and molecular status of gliomas. Methods An FCN was trained to learn the mapping between the simulated diffusion decay curves and the ground truth MDDs. We performed 5 000 000 simulation curves with various diffusivity components and random SNR . Eighty percent of simulation curves were used for the FCN training, 10% for validation, and the others were external tests for the FCN performance evaluation. In vivo data were collected to evaluate its clinical reliability. One hundred one patients (44 years 14, 67 men) with gliomas and six healthy controls underwent a 3.0 T MRI examination with a spin echo–echo planar imaging (SE‐EPI) diffusion‐weighted imaging (DWI) sequence. The trained FCN was employed to calculate MDDs of each brain voxel by voxel. We used the Fuzzy C‐means algorithm to cluster the MDDs of tumor voxels, facilitating the characterization of distinct glioma tissues. Quantitative assessments were conducted through sectional integrals of the MDDs, demarcated by six bands to derive signal fractions () and diffusivities of the maximum peaks (). Cosine similarity scores (CSS) were used for MDD similarity. ANOVA and Mann–Whitney U test were used for difference analysis. Logistic regression and area under the receiver operator characteristic curve (AUC) were used for classification evaluation. Results The simulation results showed that the FCN‐based MDD approach (FCN‐MDD) achieved higher CSS than non‐negative least squares‐based MDD (NNLS‐MDD). For in vivo data, the spectra of ET and NET obtained by FCN‐MDD are more distinguishable than NNLS‐MDD. Fraction maps delineate the characteristics of different tumor tissues (enhancing and non‐enhancing tumor, edema, and necrosis). showed a positive and negative correlation with MIB‐1 respectively (, all ). The AUC of for predicting MIB‐1 LI levels was 0.900 (95% CI, 0.826–0.974), versus 0.781 (0.677–0.886) of ADC. The highest AUC of isocitrate dehydrogenase (IDH) mutation status, assessed by a logistic regression model () was 0.873 (95% CI, 0.802–0.944). Conclusion The proposed FCN‐MDD method was more robust to variations in SNR and less reliant on empirically set regularization values than the NNLS‐MDD method. FCN‐MDD also enabled qualitative and quantitative evaluation of the composition of gliomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
9秒前
科目三应助科研通管家采纳,获得10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
浮游应助Tree_QD采纳,获得10
1分钟前
1分钟前
yuqian发布了新的文献求助10
1分钟前
浮游应助Tree_QD采纳,获得10
1分钟前
yuqian完成签到,获得积分20
1分钟前
成就小蜜蜂完成签到 ,获得积分10
1分钟前
浮游应助Tree_QD采纳,获得10
2分钟前
老迟到的友桃完成签到 ,获得积分10
2分钟前
鹏虫虫完成签到 ,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
随心所欲完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
薛家泰完成签到 ,获得积分10
4分钟前
小丸子和zz完成签到 ,获得积分10
5分钟前
lin123完成签到 ,获得积分10
5分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
VDC发布了新的文献求助10
6分钟前
无与伦比完成签到 ,获得积分10
6分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
xiliyusheng发布了新的文献求助10
7分钟前
大模型应助科研通管家采纳,获得10
7分钟前
桐桐应助宝宝不是老司机采纳,获得10
7分钟前
7分钟前
两个榴莲完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
7分钟前
7分钟前
Ava应助可靠的寒风采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
宝宝不是老司机完成签到,获得积分10
8分钟前
8分钟前
orixero应助调皮的绿真采纳,获得30
8分钟前
8分钟前
8分钟前
舒博博完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470355
求助须知:如何正确求助?哪些是违规求助? 4573196
关于积分的说明 14338203
捐赠科研通 4500289
什么是DOI,文献DOI怎么找? 2465674
邀请新用户注册赠送积分活动 1454014
关于科研通互助平台的介绍 1428670