亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Review of advances in tool condition monitoring techniques in the milling process

刀具磨损 停工期 过程(计算) 制造工程 航空航天 汽车工业 机床 计算机科学 领域(数学) 机械加工 工程类 机械工程 操作系统 数学 航空航天工程 纯数学
作者
T. Mohanraj,E S Kirubakaran,Dinesh Kumar Madheswaran,M L Naren,Suganithi Dharshan P,Mohamed N. Ibrahim
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 092002-092002 被引量:11
标识
DOI:10.1088/1361-6501/ad519b
摘要

Abstract Milling is an extremely adaptable process that can be utilized to fabricate a wide range of shapes and intricate 3D geometries. The versatility of the milling process renders it useful for the production of a diverse range of components and products in several industries, including aerospace, automotive, electronics, and medical equipment. Monitoring tool conditions is essential for maintaining product quality, minimizing production downtime, and maximizing tool life. Advances in this field have been driven by the need for increased productivity, reduced tool wear, and improved process efficiency. Tool condition monitoring (TCM) in the milling process is a critical aspect of machining operations. TCM involves assessing the health and performance of cutting tools used in milling machines. As technology evolves, staying updated with the latest developments in this field is essential for manufacturers seeking to optimize their milling operations. However, addressing the challenges associated with sensor integration, data analysis, and cost-effectiveness remains crucial. To fill this research gap, this paper provides an overview of the extensive literature on monitoring milling tool conditions. It summarizes the key focus areas, including tool wear sensors and the application of various machine learning and deep learning algorithms. It also discusses the potential applications of TCM beyond wear detection, such as predicting tool breakage, tool wear, the cutting tool’s remaining lifetime, and the challenges faced by TCMs. This review also provides suggestions for potential future research endeavors and is anticipated to offer valuable insights for the development of advanced TCMs in terms of tool wear monitoring and predicting remaining useful life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
嘻嘻哈哈应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
1秒前
小黑超努力完成签到 ,获得积分10
4秒前
4秒前
魏欣娜发布了新的文献求助10
6秒前
10秒前
12秒前
14秒前
往复发布了新的文献求助10
15秒前
NA发布了新的文献求助10
15秒前
往复完成签到,获得积分10
23秒前
科研通AI6应助cmz采纳,获得10
32秒前
魏欣娜发布了新的文献求助10
33秒前
bababiba完成签到,获得积分10
35秒前
46秒前
阿瓜师傅发布了新的文献求助10
49秒前
乐乐应助魏欣娜采纳,获得10
50秒前
51秒前
52秒前
大气踏歌发布了新的文献求助10
55秒前
负责的元柏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cmz发布了新的文献求助10
1分钟前
12321234完成签到,获得积分10
1分钟前
12321234发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
YAN完成签到 ,获得积分10
2分钟前
ZanE完成签到,获得积分10
2分钟前
平淡的芷蕊完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482348
求助须知:如何正确求助?哪些是违规求助? 4583202
关于积分的说明 14388962
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432501