FlowBERT: An Encrypted Traffic Classification Model Based on Transformers Using Flow Sequence

加密 交通分类 计算机科学 有效载荷(计算) 稳健性(进化) 数据挖掘 交通生成模型 深包检验 人工智能 机器学习 网络数据包 计算机网络 生物化学 基因 化学
作者
Quanbo Pan,Yang Yu,Hanbing Yan,Maoli Wang,Bingzhi Qi
标识
DOI:10.1109/trustcom60117.2023.00039
摘要

With the widespread application of network traffic encryption, traffic identification has become increasingly critical. As the types of encryption protocols continue to grow, identifying encrypted traffic with limited training samples has become more challenging. In recent years, pre-training models have been extensively applied in natural language processing due to their ability to utilize a large amount of unlabeled data effectively. However, when applied to encrypted traffic identification, these methods lack sufficient information extraction from encrypted network traffic, resulting in the loss of some essential features and negatively impacting the recognition performance of such approaches. Therefore, we proposed an encrypted traffic classification model based on a Transformer named FlowBERT. In FlowBERT, the semantic features of the traffic can be learned from two dimensions: payload and packet length sequence in large-scale, unlabeled encrypted traffic scenarios. Length sequences are encoded to extract traffic sequence features efficiently, enabling the model to learn the contextual semantic relationships within the sequences. Simultaneously, the pre-training process is improved by balancing data samples, enhancing the performance of the pre-training model. We validated the performance of this method on both classic encrypted traffic classification datasets and the novel network protocol DoH dataset. We concluded that our approach demonstrates robustness and superior recognition performance compared to similar methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的飞雪完成签到,获得积分10
刚刚
搜集达人应助limz采纳,获得10
1秒前
1秒前
海心完成签到,获得积分10
1秒前
思源应助冷艳招牌采纳,获得10
1秒前
dodo应助忐忑的黑猫采纳,获得200
2秒前
烟花应助131343采纳,获得10
2秒前
xuan完成签到,获得积分10
2秒前
喜悦跳跳糖完成签到 ,获得积分10
4秒前
4秒前
4秒前
英俊的铭应助swjs08采纳,获得10
4秒前
4秒前
年轻的吐司完成签到,获得积分10
5秒前
hhh123完成签到,获得积分10
6秒前
gugugaga完成签到,获得积分10
6秒前
6秒前
camillelizhaohe完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
mito完成签到,获得积分10
9秒前
qingfeng完成签到,获得积分10
10秒前
aa1212121完成签到,获得积分10
10秒前
freezing发布了新的文献求助10
11秒前
知了完成签到 ,获得积分10
11秒前
11秒前
专注的水壶完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助bunny采纳,获得10
12秒前
swjs08完成签到,获得积分10
13秒前
13秒前
13秒前
顺鑫完成签到 ,获得积分10
13秒前
Vanilla完成签到,获得积分10
14秒前
蓝胖子完成签到 ,获得积分10
14秒前
子非鱼完成签到,获得积分10
15秒前
hjyylab应助科研通管家采纳,获得10
15秒前
dong应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得20
16秒前
科研通AI2S应助殷子安采纳,获得10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
School Psychology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030480
求助须知:如何正确求助?哪些是违规求助? 3569183
关于积分的说明 11356923
捐赠科研通 3299799
什么是DOI,文献DOI怎么找? 1816891
邀请新用户注册赠送积分活动 890975
科研通“疑难数据库(出版商)”最低求助积分说明 813983