Factors influencing the adoption of generative AI in education: A systematic review, proposed framework and future research agenda

作者
Qi Tan
出处
期刊:British Educational Research Journal [Wiley]
标识
DOI:10.1002/berj.70059
摘要

Abstract Generative AI is revolutionizing various industries, particularly in education. However, its adoption in education is still limited, with several factors yet to be systematically analysed. This systematic literature review seeks to identify and categorize the key factors influencing the adoption of generative AI among educational stakeholders, such as students and teachers. To this end, a search was conducted across three databases, namely, Scopus, Web of Science Core Collection and ERIC. Finally, 43 empirical studies were included in the final review. The findings indicate increasing scholarly focus on the factors influencing generative AI adoption in education, especially in higher education, with most studies focusing on students and varying in sample sizes. The Technology Acceptance Model (TAM) was the most commonly used model for studying the adoption of generative AI in education. The factors identified were grouped into categories such as psychological and behavioural, technological, social, conditional, quality, task‐related and inhibiting factors. Additionally, some key impactful moderators were found, including gender, educational level, experience with generative AI and technological proficiency. Based on these findings, a framework for generative AI adoption in education is proposed, alongside a future research agenda. This review offers valuable theoretical insights and practical recommendations for educators, policymakers and generative AI developers in the educational context.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu发布了新的文献求助10
刚刚
qifunongsuo1213完成签到 ,获得积分10
1秒前
从心发布了新的文献求助10
1秒前
淡淡土豆应助Wanying_Diao采纳,获得10
1秒前
Kevin Huang完成签到,获得积分10
2秒前
yeye完成签到,获得积分10
3秒前
ying发布了新的文献求助10
3秒前
4秒前
星辰大海应助KaK采纳,获得10
5秒前
cogntivedisorder完成签到,获得积分10
5秒前
星辰大海应助sea采纳,获得10
5秒前
6秒前
姜将好完成签到 ,获得积分10
6秒前
酷波er应助zhangmingyang采纳,获得10
7秒前
灵巧的孤容完成签到,获得积分10
7秒前
8秒前
8秒前
ltc完成签到,获得积分10
8秒前
9秒前
9秒前
liu发布了新的文献求助10
9秒前
10秒前
11秒前
姜将好关注了科研通微信公众号
11秒前
量子星尘发布了新的文献求助10
12秒前
ying完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
lps发布了新的文献求助10
14秒前
完美世界应助淡定的萝莉采纳,获得10
15秒前
16秒前
16秒前
17秒前
18秒前
junru发布了新的文献求助10
19秒前
七仔完成签到,获得积分10
20秒前
Otorhino发布了新的文献求助20
20秒前
sweet完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511672
求助须知:如何正确求助?哪些是违规求助? 4606217
关于积分的说明 14498578
捐赠科研通 4541625
什么是DOI,文献DOI怎么找? 2488558
邀请新用户注册赠送积分活动 1470630
关于科研通互助平台的介绍 1442936