A Personalized Multimodal Federated Learning Framework for Skin Cancer Diagnosis

联合学习 计算机科学 模式 模态(人机交互) 人工智能 机器学习 软件部署 模块化设计 钥匙(锁) 多模式学习 软件工程 社会科学 计算机安全 操作系统 社会学
作者
Shuhuan Fan,Awais Ahmed,Xiaoyang Zeng,Rui Xi,Mengshu Hou
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:14 (14): 2880-2880
标识
DOI:10.3390/electronics14142880
摘要

Skin cancer is one of the most prevalent forms of cancer worldwide, and early and accurate diagnosis critically impacts patient outcomes. Given the sensitive nature of medical data and its fragmented distribution across institutions (data silos), privacy-preserving collaborative learning is essential to enable knowledge-sharing without compromising patient confidentiality. While federated learning (FL) offers a promising solution, existing methods struggle with heterogeneous and missing modalities across institutions, which reduce the diagnostic accuracy. To address these challenges, we propose an effective and flexible Personalized Multimodal Federated Learning framework (PMM-FL), which enables efficient cross-client knowledge transfer while maintaining personalized performance under heterogeneous and incomplete modality conditions. Our study contains three key contributions: (1) A hierarchical aggregation strategy that decouples multi-module aggregation from local deployment via global modular-separated aggregation and local client fine-tuning. Unlike conventional FL (which synchronizes all parameters in each round), our method adopts a frequency-adaptive synchronization mechanism, updating parameters based on their stability and functional roles. (2) A multimodal fusion approach based on multitask learning, integrating learnable modality imputation and attention-based feature fusion to handle missing modalities. (3) A custom dataset combining multi-year International Skin Imaging Collaboration(ISIC) challenge data (2018–2024) to ensure comprehensive coverage of diverse skin cancer types. We evaluate PMM-FL through diverse experiment settings, demonstrating its effectiveness in heterogeneous and incomplete modality federated learning settings, achieving 92.32% diagnostic accuracy with only a 2% drop in accuracy under 30% modality missingness, with a 32.9% communication overhead decline compared with baseline FL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐观文龙完成签到,获得积分10
1秒前
酷波er应助世界采纳,获得10
1秒前
1秒前
2秒前
CaiRong发布了新的文献求助10
2秒前
浮游应助QQ星采纳,获得10
3秒前
Ava应助QQ星采纳,获得10
3秒前
4秒前
xiaweihan发布了新的文献求助10
4秒前
小蘑菇应助lhy采纳,获得10
5秒前
5秒前
故意的驳发布了新的文献求助10
5秒前
6秒前
Lisiqi发布了新的文献求助10
6秒前
zhinian完成签到 ,获得积分10
8秒前
东郭迎松发布了新的文献求助30
9秒前
10秒前
科研通AI6应助Kyrie采纳,获得10
10秒前
10秒前
桃甜汽水完成签到,获得积分10
11秒前
12秒前
大胆的半青完成签到,获得积分10
12秒前
genius_yue发布了新的文献求助30
14秒前
15秒前
芝士雪豹发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助lml采纳,获得10
17秒前
认真白萱发布了新的文献求助10
17秒前
18秒前
念梦发布了新的文献求助10
18秒前
优雅绮波完成签到 ,获得积分10
19秒前
even完成签到 ,获得积分10
19秒前
哈哈哈发布了新的文献求助10
21秒前
genius_yue完成签到,获得积分10
21秒前
Dawn发布了新的文献求助10
22秒前
24秒前
细腻怜翠发布了新的文献求助20
24秒前
草中有粑粑完成签到,获得积分10
25秒前
lll完成签到,获得积分10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208491
求助须知:如何正确求助?哪些是违规求助? 4386000
关于积分的说明 13659449
捐赠科研通 4244993
什么是DOI,文献DOI怎么找? 2329043
邀请新用户注册赠送积分活动 1326831
关于科研通互助平台的介绍 1279056