Tailoring Solvent-Mediated CO2 Reservoirs at Heterointerfaces for Enhanced Electrochemical CO2-to-C2H4 Conversion

化学 电化学 溶剂 化学工程 光电化学 有机溶剂 无机化学 有机化学 电极 物理化学 工程类
作者
Jing Yang,Chengkai Jin,Si Di,Fusong Kang,Fen Qiao,Junfeng Wang,Dongjing Liu,Lilin Zhang,Tian Tian,Xunhua Zhao,Yu Zhou,Kang Chen,H.L. Chen,Xiao‐Shun Zhou
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (33): 29919-29929 被引量:3
标识
DOI:10.1021/jacs.5c06799
摘要

Transforming waste CO2 into value-added fuels and chemicals, while simultaneously enabling renewable electricity storage, presents a viable strategy for achieving a sustainable energy economy. However, efficient conversion to C2+ products remains challenging, primarily due to the low CO2 concentration at the catalyst surface in aqueous environments. Herein, we addressed this issue by designing Cu2O-MgO catalysts with abundant nanointerfaces serving as effective CO2 reservoirs under aqueous conditions. Ab initio molecular dynamics simulations demonstrated that these interfaces substantially enhanced the CO2 stabilization at the surface, effectively inhibiting their displacement by interfacial water molecules. This localized CO2 enrichment facilitated C-C coupling kinetics and selectively promoted the formation of target products. Building on these findings, we synthesized a model catalyst featuring abundant Cu2O-MgO nanointerfaces and evaluated its performance in aqueous media. Remarkably, flowing electrolyzer tests demonstrated a Faradaic efficiency of 67% for ethylene at a current density of ∼ 240 mA·cm-2. Subsequent mechanistic investigations combining spectroscopy experiments and theoretical calculation simulations demonstrated that the surface-enriched CO2 enhanced the CO* coverage at the Cu active sites, thereby promoting ethylene production through facilitated C-C coupling. This study pioneers the rational design of heterogeneous catalysts for selective CO2RR toward value-added chemicals with potential applications extending to diverse electrocatalytic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执意发布了新的文献求助10
刚刚
领导范儿应助QinQin采纳,获得10
刚刚
Wjt完成签到,获得积分10
1秒前
卷aaaa发布了新的文献求助10
1秒前
2秒前
科研通AI5应助Caitutu采纳,获得10
2秒前
3秒前
顶顶小明完成签到,获得积分10
4秒前
万能图书馆应助马腾龙采纳,获得10
4秒前
微笑的螃蟹完成签到,获得积分10
4秒前
Jasper应助喵了个咪采纳,获得10
6秒前
活力的仙人掌完成签到,获得积分20
6秒前
科研通AI6应助GU采纳,获得10
6秒前
健忘芷完成签到,获得积分10
6秒前
tanx完成签到,获得积分10
6秒前
天天快乐应助鄂老三采纳,获得10
6秒前
无尘发布了新的文献求助10
7秒前
7秒前
8秒前
Criminology34应助馋馋采纳,获得10
8秒前
9秒前
nini完成签到,获得积分10
9秒前
junlin发布了新的文献求助10
10秒前
001发布了新的文献求助10
10秒前
12秒前
ran完成签到,获得积分10
13秒前
繁星发布了新的文献求助10
14秒前
马腾龙发布了新的文献求助10
16秒前
16秒前
小二郎应助代怡采纳,获得10
18秒前
Desperado完成签到,获得积分10
18秒前
19秒前
yh发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
SciGPT应助莹莹啊采纳,获得10
19秒前
开心泥猴桃完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
QinQin发布了新的文献求助10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5144025
求助须知:如何正确求助?哪些是违规求助? 4341830
关于积分的说明 13521491
捐赠科研通 4182277
什么是DOI,文献DOI怎么找? 2293363
邀请新用户注册赠送积分活动 1293893
关于科研通互助平台的介绍 1236661