已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abstract P54: Applying Machine Learning to Identify Enhancers of Immune Cell Functionality for Targeted Cancer Therapies

癌症 免疫系统 增强子 医学 计算生物学 癌症研究 生物 免疫学 生物化学 内科学 基因表达 基因
作者
N. Jannah M. Nasir,John F. Ouyang,Valerie Chew,Owen J. L. Rackham
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (15_Supplement): P54-P54
标识
DOI:10.1158/1538-7445.fcs2024-p54
摘要

Abstract Drug discovery and testing are both time-consuming and costly. Leveraging single-cell transcriptomic data, we developed a machine learning framework to model patient cells using scRNA-seq data, aiming to infer gene regulatory networks (GRNs) that drive cell states and plasticity. Our computational algorithm predicts cellular responses to drug perturbations at the transcriptional level, even without experimental testing. We utilized this algorithm to identify drug candidates that could shift anti-inflammatory macrophages to a pro-inflammatory state for remodeling the tumor microenvironment, reactivate exhausted CD8 T cells, and convert immunosuppressive CD4 Treg cells into central memory CD4 cells to enhance anti-tumor activity. The predicted outcomes were validated experimentally through scRNA-seq, flow cytometry, and cytokine profiling. In human hepatocellular carcinoma (HCC), tumor infiltrating lymphocytes (TILs) treated with the predicted drugs showed a decreased FoxP3+ CD4 Treg population compared to untreated control TILs from the same HCC (n = 3). Separately, TILs treated with another set of predicted drugs showed higher levels of IFNG+ CD8 T cells than untreated controls (n = 3). Lastly, in human THP1 macrophages differentiated to an anti-inflammatory state, treatment resulted in increased levels of TNFa and IL1b secretion compared to untreated controls, indicating a phenotypic shift towards a pro-inflammatory state. We then tested the same drug on tumor associated macrophages (TAMs) from HCC and showed an increased CD64+ HLA-DR+ macrophage subset upon treatment. scRNA-seq analysis further revealed key pathways induced by the drugs, that resulted in the desired change in immune phenotype, offering insight into immune cell function and plasticity. In conclusion, this study introduced a machine-learning driven approach to identify candidate small molecules from scRNA-seq data that are capable of modulating macrophage and T cell activation, providing new avenues for targeted interventions in cancer. Citation Format: N. Jannah M. Nasir, John F. Ouyang, Valerie Chew, Owen Rackham. Applying Machine Learning to Identify Enhancers of Immune Cell Functionality for Targeted Cancer Therapies [abstract]. In: Proceedings of Frontiers in Cancer Science 2024; 2024 Nov 13-15; Singapore. Philadelphia (PA): AACR; Cancer Res 2025;85(15_Suppl):Abstract nr P54.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
简单酒窝发布了新的文献求助10
3秒前
3秒前
nano完成签到,获得积分10
4秒前
4秒前
SANBEISHUI发布了新的文献求助10
5秒前
7秒前
8秒前
千千浅浅发布了新的文献求助10
9秒前
泡泡完成签到 ,获得积分10
9秒前
10秒前
阿婧完成签到 ,获得积分10
11秒前
简单酒窝完成签到,获得积分20
11秒前
liufan完成签到 ,获得积分10
13秒前
13秒前
ccc完成签到 ,获得积分10
15秒前
辉哥完成签到,获得积分10
18秒前
唐泽雪穗应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
唐泽雪穗应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
20秒前
千千浅浅完成签到,获得积分10
20秒前
打打应助狗头233采纳,获得10
21秒前
柔弱熊猫完成签到 ,获得积分10
21秒前
薛定谔的猫完成签到,获得积分10
22秒前
郭自同完成签到,获得积分10
26秒前
123321完成签到 ,获得积分10
28秒前
30秒前
zyc1111111完成签到,获得积分10
30秒前
已有琦琦勿扰完成签到 ,获得积分10
31秒前
打打应助Lili采纳,获得10
37秒前
领导范儿应助2z采纳,获得10
40秒前
rita_sun1969完成签到,获得积分10
40秒前
QQ完成签到 ,获得积分10
40秒前
陈欣瑶完成签到 ,获得积分10
41秒前
347u完成签到 ,获得积分10
42秒前
hpF完成签到 ,获得积分10
43秒前
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4888622
求助须知:如何正确求助?哪些是违规求助? 4173040
关于积分的说明 12951288
捐赠科研通 3934201
什么是DOI,文献DOI怎么找? 2158656
邀请新用户注册赠送积分活动 1176917
关于科研通互助平台的介绍 1081278