已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Redundancy in Perceptual and Linguistic Experience: Comparing Feature‐Based and Distributional Models of Semantic Representation

分布语义学 计算机科学 自然语言处理 语义特征 人工智能 语义学(计算机科学) 特征(语言学) 聚类分析 代表(政治) 感知 语义属性 语义相似性 语言学 心理学 神经科学 法学 程序设计语言 哲学 政治 政治学
作者
Brian Riordan,Michael N. Jones
出处
期刊:Topics in Cognitive Science [Wiley]
卷期号:3 (2): 303-345 被引量:188
标识
DOI:10.1111/j.1756-8765.2010.01111.x
摘要

Abstract Since their inception, distributional models of semantics have been criticized as inadequate cognitive theories of human semantic learning and representation. A principal challenge is that the representations derived by distributional models are purely symbolic and are not grounded in perception and action; this challenge has led many to favor feature‐based models of semantic representation. We argue that the amount of perceptual and other semantic information that can be learned from purely distributional statistics has been underappreciated. We compare the representations of three feature‐based and nine distributional models using a semantic clustering task. Several distributional models demonstrated semantic clustering comparable with clustering‐based on feature‐based representations. Furthermore, when trained on child‐directed speech, the same distributional models perform as well as sensorimotor‐based feature representations of children’s lexical semantic knowledge. These results suggest that, to a large extent, information relevant for extracting semantic categories is redundantly coded in perceptual and linguistic experience. Detailed analyses of the semantic clusters of the feature‐based and distributional models also reveal that the models make use of complementary cues to semantic organization from the two data streams. Rather than conceptualizing feature‐based and distributional models as competing theories, we argue that future focus should be on understanding the cognitive mechanisms humans use to integrate the two sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助任性的咖啡采纳,获得10
2秒前
4秒前
大马哈鱼发布了新的文献求助10
10秒前
11秒前
13秒前
16秒前
16秒前
酷波er应助iu1392采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
紫荆发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
17秒前
18秒前
烟花应助紧张的新烟采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
19秒前
lyl完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343727
关于积分的说明 10317463
捐赠科研通 3060505
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295