Bayesian dynamic learning and pricing with strategic customers

后悔 收益管理 斯塔克伯格竞赛 估价(财务) 收入 动态定价 微观经济学 产品(数学) 贝叶斯博弈 计算机科学 营销 业务 经济 博弈论 序贯博弈 几何学 会计 机器学习 数学 财务
作者
Xi Chen,Jianjun Gao,Dongdong Ge,Zizhuo Wang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (8): 3125-3142 被引量:18
标识
DOI:10.1111/poms.13741
摘要

We consider a seller who repeatedly sells a nondurable product to a single customer whose valuations of the product are drawn from a certain distribution. The seller, who initially does not know the valuation distribution, may use the customer's purchase history to learn and wishes to choose a pricing policy that maximizes her long‐run revenue. Such a problem is at the core of personalized revenue management where the seller can access each customer's individual purchase history and offer personalized prices. In this paper, we study such a learning problem when the customer is aware of the seller's policy and thus may behave strategically when making a purchase decision. By using a Bayesian setting with a binary prior, we first show that a popular policy in this setting—the myopic Bayesian policy (MBP)—may lead to incomplete learning of the seller, namely, the seller may never be able to ascertain the true type of the customer and the regret may grow linearly over time. The failure of the MBP is due to the strategic action taken by the customer. To address the strategic behavior of the customers, we first analyze a Stackelberg game under a two‐period model. We derive the optimal policy of the seller in the two‐period model and show that the regret can be significantly reduced by using the optimal policy rather than the myopic policy. However, such a game is hard to analyze in general. Nevertheless, based on the idea used in the two‐period model, we propose a randomized Bayesian policy (RBP), which updates the posterior belief of the customer in each period with a certain probability, as well as a deterministic Bayesian policy (DBP), in which the seller updates the posterior belief periodically and always defers her update to the next cycle. For both the RBP and DBP, we show that the seller can learn the customer type exponentially fast even if the customer is strategic, and the regret is bounded by a constant. We also propose policies that achieve asymptotically optimal regrets when only a finite number of price changes are allowed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Get完成签到 ,获得积分10
1秒前
mumu完成签到,获得积分10
1秒前
xxxyuxi发布了新的文献求助10
1秒前
1秒前
科研小白发布了新的文献求助10
3秒前
5秒前
Criminology34应助刘震采纳,获得30
5秒前
玖玖发布了新的文献求助10
7秒前
陌路完成签到,获得积分10
7秒前
小李完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
太阳XIX完成签到,获得积分10
11秒前
12秒前
Owen应助沈three采纳,获得10
13秒前
13秒前
13秒前
14秒前
勤劳手机发布了新的文献求助10
15秒前
ll完成签到 ,获得积分10
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
mawei发布了新的文献求助10
17秒前
17秒前
18秒前
maun222发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
科目三应助mo采纳,获得10
19秒前
20秒前
zh1858f发布了新的文献求助10
20秒前
甜美河马发布了新的文献求助100
20秒前
脑洞疼应助鲤鱼月亮采纳,获得10
20秒前
21秒前
杰小瑞完成签到,获得积分10
21秒前
syy发布了新的文献求助30
21秒前
Guo发布了新的文献求助10
22秒前
时尚鸣凤完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785163
求助须知:如何正确求助?哪些是违规求助? 5686456
关于积分的说明 15466952
捐赠科研通 4914293
什么是DOI,文献DOI怎么找? 2645133
邀请新用户注册赠送积分活动 1592960
关于科研通互助平台的介绍 1547317