Tuning working potential of silicon-phosphorus anode via microstructure control for high-energy lithium-ion batteries

阳极 材料科学 法拉第效率 锂(药物) 纳米技术 化学工程 光电子学 化学 电极 医学 工程类 物理化学 内分泌学
作者
Amine Daali,Chen Zhao,Xinwei Zhou,Zhenzhen Yang,Rachid Amine,Yuzi Liu,Otieno Wilkistar,Gui‐Liang Xu,Khalil Amine
出处
期刊:Journal of Solid State Electrochemistry [Springer Science+Business Media]
卷期号:26 (9): 1919-1927 被引量:2
标识
DOI:10.1007/s10008-022-05192-0
摘要

The primary research on anode materials of lithium-ion batteries have been focused on increasing the specific capacity, while the working potential that is also closely related to the practical energy density of batteries has been paid much less attention. In this work, starting from micrometer-sized silicon and black phosphorus, we have reported a high-energy silicon-phosphorus/carbon anode (denoted as mSPC) via a high-energy ball milling process, which demonstrates an average discharge working potential of 0.3 V versus lithium, together with a high reversible capacity of > 2000 mAh/g, high initial coulombic efficiency of 84%, excellent cycle stability, and superior rate capability up to 15 A/g. Furthermore, in situ focused-ion-beam scanning electron microscopy reveals that the volume change of the mSPC anode during repeated (de) lithiation is effectively alleviated. In contrast, starting from nanometer-sized silicon, the resulted anode (denoted as nSPC) not only presents a lower reversible capacity (~ 1200 mAh/g), but also exhibits a higher charge/discharge working potential, leading to reduced energy density. Our results indicate the importance of composition/structure control in tailoring the working potential and specific capacity of alloying-type anodes towards high-energy lithium-ion batteries.Graphical abstractThe interaction of silicon and phosphorus could tune the working potential and specific capacity of anode materials for lithium-ion batteries, leading to significantly improved energy density and power density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AX关闭了AX文献求助
1秒前
咿呀咿呀发布了新的文献求助10
2秒前
123发布了新的文献求助20
3秒前
兴奋惜寒给兴奋惜寒的求助进行了留言
3秒前
5秒前
miscell应助起飞采纳,获得60
5秒前
8秒前
wp发布了新的文献求助50
10秒前
xjcy应助cmwang采纳,获得10
10秒前
11秒前
12秒前
正直尔白发布了新的文献求助10
13秒前
英俊的铭应助斯丹康采纳,获得10
14秒前
15秒前
18秒前
卢本伟牛逼完成签到,获得积分10
19秒前
21秒前
21秒前
不想看文献完成签到,获得积分10
24秒前
正直尔白完成签到,获得积分10
24秒前
HuLL发布了新的文献求助10
26秒前
28秒前
28秒前
止山完成签到,获得积分10
29秒前
勤劳怜寒发布了新的文献求助10
32秒前
33秒前
HMR完成签到 ,获得积分10
35秒前
35秒前
SYLH应助cmwang采纳,获得10
35秒前
草帽发布了新的文献求助10
35秒前
羊_发布了新的文献求助10
38秒前
蔡蔡完成签到 ,获得积分10
39秒前
JamesPei应助yhzheng采纳,获得10
40秒前
斯丹康发布了新的文献求助10
40秒前
40秒前
威武的亦绿完成签到,获得积分10
40秒前
唐一发布了新的文献求助50
41秒前
芥楠完成签到,获得积分10
43秒前
oppozhuimeng完成签到,获得积分10
43秒前
43秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Multi-omics analysis reveals the molecular mechanisms and therapeutic targets in high altitude polycythemia 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899743
求助须知:如何正确求助?哪些是违规求助? 3444355
关于积分的说明 10834596
捐赠科研通 3169254
什么是DOI,文献DOI怎么找? 1751038
邀请新用户注册赠送积分活动 846446
科研通“疑难数据库(出版商)”最低求助积分说明 789191