Slower than expected reduction in annual PM2.5 in Xi'an revealed by machine learning-based meteorological normalization

空气污染 微粒 环境科学 规范化(社会学) 污染物 气象学 空气污染物 污染 空气污染物标准 大气科学 地理 化学 生态学 有机化学 社会学 地质学 人类学 生物
作者
Meng Wang,Zhuozhi Zhang,Qi Yuan,Xinwei Li,Shuwen Han,Yuethang Lam,Long Cui,Yu Huang,Junji Cao,Shuncheng Lee
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:841: 156740-156740 被引量:33
标识
DOI:10.1016/j.scitotenv.2022.156740
摘要

To evaluate the effectiveness of air pollution control policies, trend analysis of the air pollutants is often performed. However, trend analysis of air pollutants over multiple years is complicated by the fact that changes in meteorology over time can also affect the levels of air pollutants in addition to changes in emissions or atmospheric chemistry. To decouple the meteorological effect, this study performed a trend analysis of the hourly fine particulate matter (PM2.5) observed at an urban background site in Xi'an city over 5 years from 2015 to 2019 using the machine learning algorithm. As a novel way of meteorological normalization, the meteorological parameters were used as constant input for 5 consecutive years. In this way, the impact of meteorological parameters was excluded, providing insights into the "real" changes in PM2.5 due to changes in emission strength or atmospheric chemistry. After meteorological normalization, a decreasing trend of -3.3 % year-1 (-1.9 μg m-3 year-1) in PM2.5 was seen, instead of -4.4 % year-1 from direct PM2.5 observation. Assuming the rate of -1.9 μg m-3 year-1 were kept constant for the next few decades in Xi'an, it would take approximately 25 years (in the year 2045) to reduce the annual PM2.5 level to 5 μg m-3, the new guideline value from World Health Organization. We also show that PM2.5 is primarily associated with anthropogenic emissions, which, underwent aqueous phase chemistry in winter and photochemical oxidation in summer as suggested by partial dependence of RH and Ox in different seasons. Therefore, reducing the anthropogenic secondary aerosol precursors at a higher rate, such as NOx and VOCs is expected to reduce the particulate pollution in this region more effectively than the current -3.3 % year-1 found in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
大方蘑菇完成签到 ,获得积分10
2秒前
勤劳冰烟完成签到,获得积分10
3秒前
hd发布了新的文献求助10
3秒前
萧雨墨发布了新的文献求助60
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
4秒前
原yuan应助科研通管家采纳,获得20
4秒前
晏瑜霜发布了新的文献求助10
4秒前
白小白完成签到,获得积分10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
sxb10101应助科研通管家采纳,获得30
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
zyy_cwdl发布了新的文献求助10
5秒前
orixero应助Jack采纳,获得10
5秒前
6秒前
能干的人发布了新的文献求助10
6秒前
6秒前
汉堡包应助彩色的诗桃采纳,获得10
6秒前
7秒前
青鸟飞鱼完成签到,获得积分10
8秒前
9秒前
我不吃辐射完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657072
求助须知:如何正确求助?哪些是违规求助? 4807322
关于积分的说明 15078262
捐赠科研通 4815234
什么是DOI,文献DOI怎么找? 2576511
邀请新用户注册赠送积分活动 1531702
关于科研通互助平台的介绍 1490181