HGNN: Hierarchical graph neural network for predicting the classification of price-limit-hitting stocks

库存(枪支) 股票市场 计算机科学 合并(版本控制) 利润(经济学) 计量经济学 经济 微观经济学 机械工程 古生物学 情报检索 工程类 生物
作者
Cong Xu,Huiling Huang,Xiaoting Ying,Jianliang Gao,Zhao Li,Peng Zhang,Jie Xiao,Jiarun Zhang,Jiangjian Luo
出处
期刊:Information Sciences [Elsevier BV]
卷期号:607: 783-798 被引量:31
标识
DOI:10.1016/j.ins.2022.06.010
摘要

In some stock markets, stock prices are not allowed to rise above a daily limit to restrain the surge of price (called price limit). When the price limit occurs, investors tend to chase the continuing upward momentum for profit-making. However, For the stocks that hit daily price limit, we observe whether they close at daily price limit will lead to the opposite price trends of the next trading day. Therefore, this work aims to predict whether a stock that hits its daily price limit will also close at the same price level (i.e., Type I or Type II). The occurrence of price limit is driven by different levels of market state. For example, it can result from macro-economic changes of the whole market, or it can be traced to some industry-specific factors. A challenging task is to learn a better stock representation with less uncertainty by comprehensively considering the hierarchical property of market state. Accordingly, we design a novel hierarchical architecture, called Hierarchical Graph Neural Network (HGNN), to investigate the market state at hierarchical view for stock type prediction. In HGNN, we construct the stock relation graph and merge stock information hierarchically extracted from multiple views of market state, including node view, relation view and graph view, which takes both historical sequence pattern and stock relation into consideration. Our key innovation is the introduction of hierarchical structure makes the predictive model able to more comprehensively infer the hierarchical property of market state. Further, it also provides the deeper insight for the actual investment practice. To validate the effectiveness of our method, we conduct back-testing on the two-year historical data of more than 2500 main-board stocks in two China stock markets, SSE and SZSE. To support further study of the stock type prediction task, we have published two long-range stock datasets (Datasets are available at https://drive.google.com/file/d/1TXiAyqt3rHveuzdGT6YtswU1e-tBSFUe/view?usp=sharing). Extensive experiments show that our method outperforms the state-of-the-art solutions including ALSTM, GCN and GAT with the improvements of at least 3.54% on average in accuracy. In addition, the average return ratio of SSE and SZSE has improved by 18.57% and 8.75%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Vivian采纳,获得10
2秒前
YD发布了新的文献求助10
2秒前
3秒前
3秒前
Lin.隽完成签到,获得积分10
4秒前
无情灯泡完成签到,获得积分10
5秒前
瑶瑶完成签到,获得积分20
6秒前
包容若风完成签到 ,获得积分10
6秒前
深情无血完成签到,获得积分10
6秒前
科研婷发布了新的文献求助100
7秒前
8秒前
8秒前
monster0101发布了新的文献求助10
8秒前
凡高爱自由完成签到,获得积分10
10秒前
11秒前
宋小雅完成签到,获得积分10
11秒前
秀丽灵槐完成签到,获得积分10
11秒前
12秒前
mafukairi发布了新的文献求助10
12秒前
白天亮发布了新的文献求助10
12秒前
dingm2发布了新的文献求助10
17秒前
着急的又柔给着急的又柔的求助进行了留言
18秒前
赵文若完成签到,获得积分10
18秒前
19秒前
21秒前
Sara完成签到,获得积分10
21秒前
动听松思完成签到,获得积分20
24秒前
CZ_Xsx发布了新的文献求助20
24秒前
24秒前
25秒前
山楂发布了新的文献求助10
25秒前
zhihan发布了新的文献求助30
26秒前
张文淇发布了新的文献求助20
26秒前
Jewel_719发布了新的文献求助10
27秒前
今后应助mafukairi采纳,获得10
29秒前
Jhure完成签到,获得积分10
31秒前
PhishCellar完成签到 ,获得积分10
33秒前
34秒前
35秒前
SYLH应助balko采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248