阳极
法拉第效率
电池(电)
电解质
电化学
金属
化学
电极
水溶液
剥离(纤维)
锌
化学工程
扩散
材料科学
分析化学(期刊)
冶金
热力学
物理化学
复合材料
物理
工程类
功率(物理)
色谱法
作者
Zhao Cai,Jindi Wang,Ziheng Lu,Renming Zhan,Yangtao Ou,Li Wang,Mouad Dahbi,Jones Alami,Jun Lü,Khalil Amine,Yongming Sun
标识
DOI:10.1002/anie.202116560
摘要
Metallic Zn is a preferred anode material for rechargeable aqueous batteries towards a smart grid and renewable energy storage. Understanding how the metal nucleates and grows at the aqueous Zn anode is a critical and challenging step to achieve full reversibility of Zn battery chemistry, especially under fast-charging conditions. Here, by combining in situ optical imaging and theoretical modeling, we uncover the critical parameters governing the electrodeposition stability of the metallic Zn electrode, that is, the competition among crystallographic thermodynamics, kinetics, and Zn2+ -ion diffusion. Moreover, steady-state Zn metal plating/stripping with Coulombic efficiency above 99 % is achieved at 10-100 mA cm-2 in a reasonably high concentration (3 M) ZnSO4 electrolyte. Significantly, a long-term cycling-stable Zn metal electrode is realized with a depth of discharge of 66.7 % under 50 mA cm-2 in both Zn||Zn symmetrical cells and MnO2 ||Zn full cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI