DRP1-mediated mitochondrial fission is essential to maintain cristae morphology and bioenergetics

线粒体分裂 DNM1L型 细胞生物学 线粒体 过氧化物酶体 第一季 生物 生物能学 线粒体融合 MFN2型 线粒体DNA 生物化学 基因
作者
Gabriella L. Robertson,Stellan Riffle,Mira C. Patel,Andrea G. Marshall,Heather K. Beasley,Edgar Garza‐Lopez,Jianqiang Shao,Zer Vue,Antentor Hinton,Jason A. Mears,Vivian Gama
标识
DOI:10.1101/2021.12.31.474637
摘要

Abstract Mitochondria and peroxisomes are both dynamic signaling organelles that constantly undergo fission. While mitochondrial fission is known to coordinate cellular metabolism, proliferation, and apoptosis, the physiological relevance of peroxisome dynamics and the implications for cell fate are not fully understood. DRP1 (dynamin-related protein 1) is an essential GTPase that executes both mitochondrial and peroxisomal fission. Patients with de novo heterozygous missense mutations in the gene that encodes DRP1, DNM1L (Dynamin 1 Like) , present with encephalopathy due to defective mitochondrial and peroxisomal fission (EMPF1). EMPF1 is a devastating neurodevelopmental disease with no effective treatment. To interrogate the mechanisms by which DRP1 mutations cause cellular dysfunction, we used human-derived fibroblasts from patients with mutations in DRP1 who present with EMPF1. As expected, patient cells display elongated mitochondrial morphology and lack of fission. Patient cells display a lower coupling efficiency of the electron transport chain, increased proton leak, and upregulation of glycolysis. In addition to these metabolic abnormalities, mitochondrial hyperfusion results in aberrant cristae structure and hyperpolarized mitochondrial membrane potential, both of which are tightly linked to the changes in metabolism. Peroxisome structure is also severely elongated in patient cells and results in a potential functional compensation of fatty acid oxidation. Understanding the mechanism by which DRP1 mutations cause these metabolic changes will give insight into the role of mitochondrial dynamics in cristae maintenance and the metabolic capacity of the cell, as well as the disease mechanism underlying EMPF1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助haozaizai采纳,获得10
刚刚
weiwei发布了新的文献求助10
1秒前
1秒前
轻松碧曼完成签到,获得积分10
2秒前
2秒前
4秒前
郭懒懒关注了科研通微信公众号
7秒前
5123发布了新的文献求助10
7秒前
赘婿应助轻松碧曼采纳,获得10
7秒前
9秒前
10秒前
个性的紫菜应助kmzzy采纳,获得10
11秒前
认真晓灵完成签到,获得积分20
12秒前
13秒前
13秒前
King16发布了新的文献求助30
14秒前
勤奋的金鱼完成签到,获得积分10
14秒前
16秒前
18秒前
19秒前
mmmmmMM发布了新的文献求助10
20秒前
iVANPENNY应助小张张采纳,获得20
21秒前
小鹿应助白问寒采纳,获得10
22秒前
刻苦觅海完成签到 ,获得积分10
22秒前
25秒前
25秒前
orixero应助老实的栾采纳,获得10
27秒前
28秒前
virgil应助张志迪采纳,获得10
28秒前
无氧旅人完成签到,获得积分10
28秒前
29秒前
英俊的铭应助妮蔻king采纳,获得10
29秒前
29秒前
无私小小发布了新的文献求助10
29秒前
30秒前
30秒前
HIT_C发布了新的文献求助30
30秒前
31秒前
31秒前
cccc发布了新的文献求助10
32秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2417200
求助须知:如何正确求助?哪些是违规求助? 2109554
关于积分的说明 5335048
捐赠科研通 1836699
什么是DOI,文献DOI怎么找? 914768
版权声明 561068
科研通“疑难数据库(出版商)”最低求助积分说明 489200