清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PanIN and CAF Transitions in Pancreatic Carcinogenesis Revealed with Spatial Data Integration

胰腺上皮内瘤变 肿瘤微环境 癌症研究 癌变 胰腺癌 生物 上皮内瘤变 细胞 腺癌 病理 癌症 计算生物学 胰腺导管腺癌 医学 前列腺癌 肿瘤细胞 遗传学
作者
Alexander T.F. Bell,Jacob T. Mitchell,Ashley Kiemen,Kohei Fujikura,Helen Fedor,Bonnie Gambichler,Atul Deshpande,Pei‐Hsun Wu,D. Sidiropoulos,Rossin Erbe,Jacob Stern,Rena Chan,Stephen R. Williams,James M. Chell,Jacquelyn W. Zimmerman,Denis Wirtz,Elizabeth M. Jaffee,Laura D. Wood,Elana J. Fertig,Luciane T. Kagohara
标识
DOI:10.1101/2022.07.16.500312
摘要

Abstract Spatial transcriptomics (ST) is a powerful new approach to characterize the cellular and molecular architecture of the tumor microenvironment. Previous single-cell RNA-sequencing (scRNA-seq) studies of pancreatic ductal adenocarcinoma (PDAC) have revealed a complex immunosuppressive environment characterized by numerous cancer associated fibroblasts (CAFs) subtypes that contributes to poor outcomes. Nonetheless, the evolutionary processes yielding that microenvironment remain unknown. Pancreatic intraepithelial neoplasia (PanIN) is a premalignant lesion with potential to develop into PDAC, but the formalin-fixed and paraffin-embedded (FFPE) specimens required for PanIN diagnosis preclude scRNA-seq profiling. We developed a new experimental pipeline for FFPE ST analysis of PanINs that preserves clinical specimens for diagnosis. We further developed novel multi-omics analysis methods for threefold integration of imaging, ST, and scRNA-seq data to analyze the premalignant microenvironment. The integration of ST and imaging enables automated cell type annotation of ST spots at a single-cell resolution, enabling spot selection and deconvolution for unique cellular components of the tumor microenvironment (TME). Overall, this approach demonstrates that PanINs are surrounded by the same subtypes of CAFs present in invasive PDACs, and that the PanIN lesions are predominantly of the classical PDAC subtype. Moreover, this new experimental and computational protocol for ST analysis suggests a biological model in which CAF-PanIN interactions promote inflammatory signaling in neoplastic cells which transitions to proliferative signaling as PanINs progress to PDAC. Summary Pancreatic intraepithelial neoplasia (PanINs) are pre-malignant lesions that progress into pancreatic ductal adenocarcinoma (PDAC). Recent advances in single-cell technologies have allowed for detailed insights into the molecular and cellular processes of PDAC. However, human PanINs are stored as formalin-fixed and paraffin-embedded (FFPE) specimens limiting similar profiling of human carcinogenesis. Here, we describe a new analysis protocol that enables spatial transcriptomics (ST) analysis of PanINs while preserving the FFPE blocks required for clinical assessment. The matched H&E imaging for the ST data enables novel machine learning approaches to automate cell type annotations at a single-cell resolution and isolate neoplastic regions on the tissue. Transcriptional profiles of these annotated cells enable further refinement of imaging-based cellular annotations, showing that PanINs are predominatly of the classical subtype and surrounded by PDAC cancer associated fibroblast (CAF) subtypes. Applying transfer learning to integrate ST PanIN data with PDAC scRNA-seq data enables the analysis of cellular and molecular progression from PanINs to PDAC. This analysis identified a transition between inflammatory signaling induced by CAFs and proliferative signaling in PanIN cells as they become invasive cancers. Altogether, this integration of imaging, ST, and scRNA-seq data provides an experimental and computational approach for the analysis of cancer development and progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
8秒前
15秒前
灿烂而孤独的八戒完成签到 ,获得积分0
34秒前
keyanxiaobai发布了新的文献求助200
38秒前
两个榴莲完成签到,获得积分0
40秒前
44秒前
卫小萱完成签到 ,获得积分10
49秒前
小蜗牛发布了新的文献求助10
53秒前
59秒前
silence完成签到 ,获得积分10
1分钟前
1分钟前
研友_Lw7OvL完成签到 ,获得积分10
1分钟前
小蜗牛完成签到,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助Linlin采纳,获得10
1分钟前
陶醉巧凡完成签到,获得积分10
1分钟前
1分钟前
狂野的含烟完成签到 ,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得30
1分钟前
2分钟前
keyanxiaobai完成签到,获得积分10
2分钟前
3分钟前
3分钟前
Jonathan发布了新的文献求助10
3分钟前
3分钟前
Jonathan完成签到,获得积分10
3分钟前
duj622完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Able完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Linlin发布了新的文献求助10
4分钟前
4分钟前
芷兰丁香完成签到,获得积分10
4分钟前
tt完成签到,获得积分10
5分钟前
hanawang发布了新的文献求助30
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389132
捐赠科研通 4512370
什么是DOI,文献DOI怎么找? 2472938
邀请新用户注册赠送积分活动 1459111
关于科研通互助平台的介绍 1432605