Augmented reality calibration using feature triangulation iteration-based registration for surgical navigation

计算机视觉 人工智能 计算机科学 增强现实 校准 三角测量 特征(语言学) 成像体模 分割 点云 图像配准 摄像机切除 迭代最近点 影像引导手术 匹配(统计) 图像(数学) 核医学 数学 医学 语言学 统计 哲学 几何学
作者
Lisheng Shao,Shuo Yang,Tianyu Fu,Yucong Lin,Haixiao Geng,Danni Ai,Jingfan Fan,Hong Song,Tao Zhang,Jian Yang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105826-105826 被引量:3
标识
DOI:10.1016/j.compbiomed.2022.105826
摘要

Marker-based augmented reality (AR) calibration methods for surgical navigation often require a second computed tomography scan of the patient, and their clinical application is limited due to high manufacturing costs and low accuracy.This work introduces a novel type of AR calibration framework that combines a Microsoft HoloLens device with a single camera registration module for surgical navigation. A camera is used to gather multi-view images of a patient for reconstruction in this framework. A shape feature matching-based search method is proposed to adjust the size of the reconstructed model. The double clustering-based 3D point cloud segmentation method and 3D line segment detection method are also proposed to extract the corner points of the image marker. The corner points are the registration data of the image marker. A feature triangulation iteration-based registration method is proposed to quickly and accurately calibrate the pose relationship between the image marker and the patient in the virtual and real space. The patient model after registration is wirelessly transmitted to the HoloLens device to display the AR scene.The proposed approach was used to conduct accuracy verification experiments on the phantoms and volunteers, which were compared with six advanced AR calibration methods. The proposed method obtained average fusion errors of 0.70 ± 0.16 and 0.91 ± 0.13 mm in phantom and volunteer experiments, respectively. The fusion accuracy of the proposed method is the highest among all comparison methods. A volunteer liver puncture clinical simulation experiment was also conducted to show the clinical feasibility.Our experiments proved the effectiveness of the proposed AR calibration method, and revealed a considerable potential for improving surgical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YJL发布了新的文献求助10
1秒前
CJYY完成签到,获得积分10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
4秒前
puhong zhang发布了新的文献求助20
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
个性归尘应助科研通管家采纳,获得10
4秒前
coolkid应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
ww发布了新的文献求助50
5秒前
彭于彦祖应助Echo采纳,获得20
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
个性归尘应助科研通管家采纳,获得15
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
7秒前
缓慢剑通完成签到 ,获得积分10
7秒前
7秒前
star发布了新的文献求助10
8秒前
SciGPT应助震动的曲奇采纳,获得10
8秒前
ddd发布了新的文献求助10
8秒前
烟花应助亲亲采纳,获得10
8秒前
麻烦~发布了新的文献求助10
8秒前
theyulong完成签到,获得积分10
9秒前
9秒前
严不平完成签到,获得积分10
9秒前
半夏完成签到,获得积分10
10秒前
10秒前
11秒前
冲冲完成签到,获得积分10
11秒前
英俊的铭应助漂亮夏兰采纳,获得10
11秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Surface and Interfacial Tension Measurement, Theory, and Applications 200
The phrasal lexicon 200
Layered double hydroxides: present and futureV. Rives (Ed.), Nova Science Publishers, Inc., New York, 2001, IX+439 pp., ISBN 1-59033-060-9 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836081
求助须知:如何正确求助?哪些是违规求助? 3378438
关于积分的说明 10504389
捐赠科研通 3098042
什么是DOI,文献DOI怎么找? 1706220
邀请新用户注册赠送积分活动 820886
科研通“疑难数据库(出版商)”最低求助积分说明 772312