Effects of soil ECa and LiDAR-derived leaf area on yield and fruit quality in apple production

天蓬 数学 苹果属植物 园艺 决定系数 激光雷达 树冠 均方误差 苹果树 标准差 植物 遥感 统计 生物 地理
作者
Nikos Tsoulias,G. Xanthopoulos,Spyros Fountas,Manuela Zude-Sasse
出处
期刊:Biosystems Engineering [Elsevier BV]
卷期号:223: 182-199 被引量:11
标识
DOI:10.1016/j.biosystemseng.2022.03.007
摘要

Spatio-temporal estimation of tree canopy geometry in three-dimensional space (3D) was carried out using a LiDAR scanner in commercial apple production (Malus × domestica Borkh. ‘Gala’/M9) at 55, 85, 115, 140 days after bud break (DABB) for two years. Leaf area (LA) was measured by defoliating trees to calibrate corresponding LiDAR-based points per tree (PPT). Estimation of LA was improved when points of woody parts were removed from PPT, resulting in leave-one-out cross validation adjacent coefficient of determination (R2adj,CV) of 0.92 and root mean squared error (RMSECV) of 4.52%. Spatio-temporal LA was obtained for each tree (n = 4506) showing mean values of 6.25 m2 and 7.15 m2 with high standard deviation of 3.64 m2 and 2.83 m2 in 2018 and 2019, respectively. The growth rate of foliage was calculated with sigmoid growth function quantifying the full development of canopies at DABB105 and DABB95 in 2018 and 2019, respectively. Apparent soil electrical conductivity (ECa) and LA were correlated with fruit size. Accordingly, k-nearest neighbour models were built to predict fruit quality at harvest from first year data, validated on second year data. Based on geoposition and ECa, classification accuracy for fruit size in the test set validation was 48.1%, whereas classification with geopositioning and LA resulted in 67.9% accurate classification. Results highlight the spatio-temporal variation of canopy growth considering a high sample number. Furthermore, results support the future use of LA data instead or in addition to soil data in decision support systems aimed at optimising orchard management practices and, particularly, quantifying the impact of orchard management on fruit size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
笔至梦花完成签到 ,获得积分10
1秒前
wangziwen应助之后再说咯采纳,获得30
2秒前
4秒前
jingjing发布了新的文献求助30
5秒前
欣喜的以丹完成签到,获得积分10
6秒前
Christina完成签到,获得积分10
8秒前
雪梨发布了新的文献求助30
10秒前
乐乐应助无限的绮南采纳,获得20
11秒前
licaifang发布了新的文献求助10
11秒前
王欣完成签到,获得积分10
13秒前
小二郎应助甜筒采纳,获得10
14秒前
14秒前
14秒前
15秒前
xixi发布了新的文献求助10
15秒前
16秒前
现实的俊驰完成签到 ,获得积分10
16秒前
天天快乐应助非也非也6采纳,获得10
17秒前
17秒前
李爱国应助wise111采纳,获得10
17秒前
18秒前
乐乐应助读书的时候采纳,获得10
19秒前
自然妙竹发布了新的文献求助10
19秒前
20秒前
U9A发布了新的文献求助10
20秒前
21秒前
Orange应助走走采纳,获得10
21秒前
hhh发布了新的文献求助10
21秒前
852应助外向宛菡采纳,获得10
22秒前
独特听芹完成签到,获得积分10
22秒前
静下心发布了新的文献求助10
23秒前
bubu关注了科研通微信公众号
26秒前
xixi完成签到,获得积分10
26秒前
科研通AI5应助勤劳的孤兰采纳,获得30
26秒前
colaaa发布了新的文献求助30
27秒前
27秒前
bkagyin应助嗷嗷采纳,获得10
28秒前
30秒前
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097519
求助须知:如何正确求助?哪些是违规求助? 3635198
关于积分的说明 11522765
捐赠科研通 3345399
什么是DOI,文献DOI怎么找? 1838659
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497