Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging

高光谱成像 人工智能 RGB颜色模型 卷积神经网络 计算机科学 分割 模式识别(心理学) 计算机视觉
作者
Ling Ma,James V. Little,Amy Y. Chen,Larry L. Myers,Baran D. Sumer,Baowei Fei
出处
期刊:Journal of Biomedical Optics 卷期号:27 (04) 被引量:11
标识
DOI:10.1117/1.jbo.27.4.046501
摘要

Automatic, fast, and accurate identification of cancer on histologic slides has many applications in oncologic pathology.The purpose of this study is to investigate hyperspectral imaging (HSI) for automatic detection of head and neck cancer nuclei in histologic slides, as well as cancer region identification based on nuclei detection.A customized hyperspectral microscopic imaging system was developed and used to scan histologic slides from 20 patients with squamous cell carcinoma (SCC). Hyperspectral images and red, green, and blue (RGB) images of the histologic slides with the same field of view were obtained and registered. A principal component analysis-based nuclei segmentation method was developed to extract nuclei patches from the hyperspectral images and the coregistered RGB images. Spectra-based support vector machine and patch-based convolutional neural networks (CNNs) were implemented for nuclei classification. The CNNs were trained with RGB patches (RGB-CNN) and hyperspectral patches (HSI-CNN) of the segmented nuclei and the utility of the extra spectral information provided by HSI was evaluated. Furthermore, cancer region identification was implemented by image-wise classification based on the percentage of cancerous nuclei detected in each image.RGB-CNN, which mainly used the spatial information of nuclei, resulted in a 0.81 validation accuracy and 0.74 testing accuracy. HSI-CNN, which utilized the spatial and spectral features of the nuclei, showed significant improvement in classification performance and achieved 0.89 validation accuracy as well as 0.82 testing accuracy. Furthermore, the image-wise cancer region identification based on nuclei detection could generally improve the cancer detection rate.We demonstrated that the morphological and spectral information contribute to SCC nuclei differentiation and that the spectral information within hyperspectral images could improve classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
自觉的凌寒关注了科研通微信公众号
3秒前
buding完成签到,获得积分10
3秒前
打打应助静夜谧思采纳,获得10
4秒前
4秒前
脑洞疼应助guoxihan采纳,获得10
4秒前
6秒前
gjww应助会飞的猪采纳,获得10
8秒前
8秒前
Rui发布了新的文献求助10
9秒前
魔幻的冬寒完成签到 ,获得积分10
10秒前
斯文败类应助故意的鼠标采纳,获得10
13秒前
15秒前
英姑应助DSH采纳,获得10
16秒前
17秒前
18秒前
18秒前
19秒前
20秒前
gar完成签到 ,获得积分10
22秒前
1234发布了新的文献求助10
22秒前
鳗鱼老师完成签到 ,获得积分10
22秒前
22秒前
22秒前
23秒前
24秒前
江湖笑发布了新的文献求助10
24秒前
25秒前
25秒前
27秒前
zxyhb发布了新的文献求助10
27秒前
28秒前
qujue001发布了新的文献求助10
28秒前
29秒前
Mike001发布了新的文献求助10
29秒前
Mike001发布了新的文献求助10
30秒前
大橙子完成签到,获得积分10
32秒前
爆米花应助懵懂的书蝶采纳,获得10
33秒前
希文完成签到,获得积分10
34秒前
秋雪瑶应助van_采纳,获得10
35秒前
高分求助中
Teaching Social and Emotional Learning in Physical Education 900
Plesiosaur extinction cycles; events that mark the beginning, middle and end of the Cretaceous 800
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism 500
Chinese-English Translation Lexicon Version 3.0 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 460
Wisdom, Gods and Literature Studies in Assyriology in Honour of W. G. Lambert 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2393830
求助须知:如何正确求助?哪些是违规求助? 2097779
关于积分的说明 5286026
捐赠科研通 1825262
什么是DOI,文献DOI怎么找? 910154
版权声明 559943
科研通“疑难数据库(出版商)”最低求助积分说明 486418