李普希茨连续性
正规化(语言学)
各向同性
形状优化
有界函数
数学
周长
反问题
数学分析
稳健性(进化)
应用数学
数学优化
算法
几何学
计算机科学
物理
有限元法
光学
人工智能
生物化学
热力学
基因
化学
标识
DOI:10.1088/1361-6420/ac82e4
摘要
Abstract We deal with the geometrical inverse problem of the shape reconstruction of cavities in a bounded linear isotropic medium by means of boundary data. The problem is addressed from the point of view of optimal control: the goal is to minimize in the class of Lipschitz domains a Kohn–Vogelius type functional with a perimeter regularization term which penalizes the perimeter of the cavity to be reconstructed. To solve numerically the optimization problem, we use a phase-field approach, approximating the perimeter functional with a Modica–Mortola relaxation and modeling the cavity as an inclusion with a very small elastic tensor. We provide a detailed analysis showing the robustness of the algorithm through some numerical experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI