亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Expectations Attenuate the Negative Influence of Neural Adaptation on the Processing of Novel Stimuli: ERP Evidence

神经适应 适应(眼睛) 400奈米 事件相关电位 心理学 意识的神经相关物 600页 神经科学 听力学 认知心理学 脑电图 计算机科学 认知 医学
作者
Haiqiong Yan,Liyu Zhou,Jingyuan Ren,Fuhong Li,Furong Huang
出处
期刊:Neuroscience [Elsevier BV]
卷期号:492: 58-66
标识
DOI:10.1016/j.neuroscience.2022.04.003
摘要

When processing repeated stimuli, the neural response is attenuated (i.e., neural adaptation) and performance seems to be facilitated; however, this neural adaptation negatively influences the subsequent processing of novel stimuli. The present study was designed to test whether and how temporal expectations reduce neural adaptation and attenuate the negative influence of neural adaptation on subsequent novel problem solving. Temporal expectations were experimentally manipulated by asking participants to solve a novel problem following three to five repeated problems, generating the expectation of repeated events in the first three serial positions as well as that of novel events in the fourth to sixth serial positions. Compared to the first occurrence, repeated problems evoked more negative deflections, including greater N1, lower P2 and greater LNC amplitudes, regardless of whether participants expected a repeated or novel event; however, the mean amplitudes of the P2 and LNC were smaller in the latter condition. These results show neural adaptation during processing of repeated stimuli and demonstrate that neural adaptation is reduced when a novel event is expected. Regarding the novel events, the conflict monitoring- and resolution-related N400, P600 and LNC amplitudes decreased with decreased neural adaptation. These results indicate that the expectation of novel events attenuate the negative influence of neural adaptation on the subsequent processing of novel events. This study provides new insight into alleviating the constraints imposed by frequently used knowledge on the processing of novel stimuli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
润润润完成签到 ,获得积分10
13秒前
19秒前
20秒前
47秒前
建新发布了新的文献求助50
51秒前
litianyuan发布了新的文献求助10
52秒前
从容芮应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
从容芮应助科研通管家采纳,获得30
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
王石雨晨发布了新的文献求助10
1分钟前
四月完成签到,获得积分10
1分钟前
酷波er应助咸金城采纳,获得30
1分钟前
1分钟前
Serendiply发布了新的文献求助10
1分钟前
1分钟前
忐忑的如冰完成签到,获得积分10
1分钟前
1分钟前
咸金城发布了新的文献求助30
1分钟前
打工不可能完成签到,获得积分10
1分钟前
科研通AI5应助litianyuan采纳,获得80
1分钟前
田様应助wenwen采纳,获得10
1分钟前
ch发布了新的文献求助10
1分钟前
yinlao完成签到,获得积分10
1分钟前
2分钟前
丘比特应助咸金城采纳,获得30
2分钟前
wenwen发布了新的文献求助10
2分钟前
2分钟前
挖掘机完成签到,获得积分10
2分钟前
咸金城发布了新的文献求助30
2分钟前
2分钟前
LAN完成签到,获得积分10
2分钟前
ch发布了新的文献求助10
2分钟前
在水一方应助求索采纳,获得10
2分钟前
曹铁鹏完成签到,获得积分10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833707
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492252
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704674
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792