InDepth

渲染(计算机图形) 计算机科学 人工智能 移动设备 修补 增强现实 计算机视觉 虚拟现实 建筑 推论 计算机图形学(图像) 图像(数学) 操作系统 艺术 视觉艺术
作者
Yunfan Zhang,Tim Scargill,Ashutosh Vaishnav,Gopika Premsankar,Mario Di Francesco,Maria Gorlatova
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:6 (1): 1-25 被引量:16
标识
DOI:10.1145/3517260
摘要

Mobile Augmented Reality (AR) demands realistic rendering of virtual content that seamlessly blends into the physical environment. For this reason, AR headsets and recent smartphones are increasingly equipped with Time-of-Flight (ToF) cameras to acquire depth maps of a scene in real-time. ToF cameras are cheap and fast, however, they suffer from several issues that affect the quality of depth data, ultimately hampering their use for mobile AR. Among them, scale errors of virtual objects - appearing much bigger or smaller than what they should be - are particularly noticeable and unpleasant. This article specifically addresses these challenges by proposing InDepth, a real-time depth inpainting system based on edge computing. InDepth employs a novel deep neural network (DNN) architecture to improve the accuracy of depth maps obtained from ToF cameras. The DNN fills holes and corrects artifacts in the depth maps with high accuracy and eight times lower inference time than the state of the art. An extensive performance evaluation in real settings shows that InDepth reduces the mean absolute error by a factor of four with respect to ARCore DepthLab. Finally, a user study reveals that InDepth is effective in rendering correctly-scaled virtual objects, outperforming DepthLab.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iceeer完成签到,获得积分10
刚刚
刚刚
刚刚
fanfan完成签到,获得积分10
刚刚
科研通AI5应助Tingting采纳,获得10
刚刚
suliang应助愉快寄真采纳,获得10
1秒前
1秒前
星睿发布了新的文献求助10
2秒前
Jasper应助平常的忆文采纳,获得10
2秒前
3秒前
认真的薄荷完成签到,获得积分10
3秒前
欣喜书蕾完成签到,获得积分10
3秒前
4秒前
去偷火龙果完成签到,获得积分10
4秒前
实心球发布了新的文献求助30
4秒前
太叔白风完成签到,获得积分10
4秒前
4秒前
晨曦完成签到 ,获得积分10
4秒前
SYLH应助静香同学采纳,获得10
4秒前
XCZV完成签到,获得积分20
5秒前
5秒前
5秒前
大力蚂蚁完成签到,获得积分10
6秒前
zhihui完成签到,获得积分10
6秒前
熬夜大王完成签到,获得积分10
6秒前
dilili完成签到,获得积分20
6秒前
WXY发布了新的文献求助10
6秒前
Kail完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
8秒前
8秒前
yuti发布了新的文献求助10
8秒前
幽芊细雨完成签到,获得积分10
8秒前
小骆完成签到,获得积分10
9秒前
zhihui发布了新的文献求助10
9秒前
9秒前
栗子完成签到 ,获得积分10
9秒前
Night发布了新的文献求助10
9秒前
10秒前
QQqq完成签到,获得积分10
10秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830708
求助须知:如何正确求助?哪些是违规求助? 3373047
关于积分的说明 10477167
捐赠科研通 3093166
什么是DOI,文献DOI怎么找? 1702362
邀请新用户注册赠送积分活动 818956
科研通“疑难数据库(出版商)”最低求助积分说明 771173