Optimum Design of Fully Composite, Unstiffened, Built-Up, Hybrid Steel Girder Using GRG, NLR, and ANN Techniques

结构工程 可用性(结构) 人工神经网络 梁(结构) 工程类 有限元法 复合数 计算机科学 算法 机器学习
作者
Mohamed A. El-Aghoury,Ahmed M. Ebid,Kennedy C. Onyelowe
出处
期刊:Journal of engineering [Hindawi Limited]
卷期号:2022: 1-25 被引量:14
标识
DOI:10.1155/2022/7439828
摘要

Composite steel beams are commonly used element in multistorey steel buildings to enhance floor economy and serviceability and provide more clear height. Due to the low level of stress in the webs of such beams, hybrid sections are used where the flanges have higher strength than the webs. A lot of earlier research was carried out to optimize the design of the hybrid and nonhybrid composite steel beams under both static loading and dynamic behavior. However, there is still a need to develop a more practical optimization method. The aim of this research is to develop simple and practical equations to determine the optimum cross section dimensions for both shored and unshored, simply supported, hybrid and nonhybrid, composite steel beam under static loads. To achieve that goal, a research program of two phases was carried out. The first phase was generating a database of 504 composite beams with different steel grades for flanges and webs, subjected to different values of bending moment. The cross section of each beam in the database was optimized using GRG technique to minimize the cost considering the unit price of each steel grade. In the second phase, the generated database was divided into training and validation subsets and used to develop two predictive models using Nonlinear Regression (NLR) technique and Artificial Neural Network (ANN) technique to predict the optimum cross section dimensions and hence the optimum weight and cost. The accuracies of the developed models were measured in terms of average error percent. NLR and ANN models showed average error percent of 16% and 11%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助布衣采纳,获得10
1秒前
2秒前
清脆天空发布了新的文献求助10
2秒前
小罗发布了新的文献求助10
3秒前
3秒前
yznfly应助Rinamamiya采纳,获得100
6秒前
8秒前
xjz完成签到,获得积分10
8秒前
8秒前
浅色西完成签到,获得积分10
8秒前
9秒前
9秒前
姜旭阳发布了新的文献求助10
9秒前
Harssi发布了新的文献求助20
10秒前
可爱的函函应助夏侯炎彬采纳,获得10
10秒前
aimee完成签到,获得积分10
11秒前
无花果应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
ZOE应助科研通管家采纳,获得80
12秒前
12秒前
笑ige发布了新的文献求助10
12秒前
12秒前
ZOE应助科研通管家采纳,获得80
12秒前
直率友儿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
直率友儿应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738004
求助须知:如何正确求助?哪些是违规求助? 5375384
关于积分的说明 15336772
捐赠科研通 4881204
什么是DOI,文献DOI怎么找? 2623397
邀请新用户注册赠送积分活动 1572127
关于科研通互助平台的介绍 1528974