At present, stereolithography 3D printing technology is widely used in ceramic additive manufacturing because of its high printing accuracy.Among them, the stereolithography ceramic slurry of non-oxide ceramics such as silicon carbide, silicon nitride, etc., has problems such as poor dispersion stability and low curing layer thickness because the incident light is difficult to penetrate and produce light curing reaction for printing high-solid-loading slurry.This is all because the refractive index and optical absorbance of the non-oxide ceramic printing material powder are relatively high.Therefore, printing and molding of high-solid-content non-oxide ceramics have become main challenges in stereolithography 3D printing, and the technology has attracted a large number of researchers to study its light-curing mechanism, powder control and other mechanisms.This paper systematically summarizes the