Alleviating estimation problems in small sample structural equation modeling—A comparison of constrained maximum likelihood, Bayesian estimation, and fixed reliability approaches.

马尔科夫蒙特卡洛 贝叶斯概率 可靠性(半导体) 统计 样本量测定 蒙特卡罗方法 贝叶斯估计量 结构方程建模 估计员 数学 计算机科学 对比度(视觉) 样品(材料) 数学优化 人工智能 色谱法 物理 量子力学 功率(物理) 化学
作者
Esther Ulitzsch,Oliver Lüdtke,Alexander Robitzsch
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:28 (3): 527-557 被引量:26
标识
DOI:10.1037/met0000435
摘要

Small sample structural equation modeling (SEM) may exhibit serious estimation problems, such as failure to converge, inadmissible solutions, and unstable parameter estimates. A vast literature has compared the performance of different solutions for small sample SEM in contrast to unconstrained maximum likelihood (ML) estimation. Less is known, however, on the gains and pitfalls of different solutions in contrast to each other. Focusing on three current solutions-constrained ML, Bayesian methods using Markov chain Monte Carlo techniques, and fixed reliability single indicator (SI) approaches-we bridge this gap. When doing so, we evaluate the potential and boundaries of different parameterizations, constraints, and weakly informative prior distributions for improving the quality of the estimation procedure and stabilizing parameter estimates. The performance of all approaches is compared in a simulation study. Under conditions with low reliabilities, Bayesian methods without additional prior information by far outperform constrained ML in terms of accuracy of parameter estimates as well as the worst-performing fixed reliability SI approach and do not perform worse than the best-performing fixed reliability SI approach. Under conditions with high reliabilities, constrained ML shows good performance. Both constrained ML and Bayesian methods exhibit conservative to acceptable Type I error rates. Fixed reliability SI approaches are prone to undercoverage and severe inflation of Type I error rates. Stabilizing effects on Bayesian parameter estimates can be achieved even with mildly incorrect prior information. In an empirical example, we illustrate the practical importance of carefully choosing the method of analysis for small sample SEM. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溏心完成签到,获得积分10
刚刚
科研通AI6应助乐观的海采纳,获得10
刚刚
1秒前
科研CY完成签到,获得积分10
1秒前
微糖给李lll的求助进行了留言
1秒前
2秒前
Poppy发布了新的文献求助10
2秒前
weirdo发布了新的文献求助10
2秒前
祁淑娴发布了新的文献求助10
2秒前
3秒前
jt完成签到 ,获得积分10
3秒前
Xiaoping发布了新的文献求助10
3秒前
大意的乐菱完成签到,获得积分10
3秒前
wyy完成签到,获得积分10
3秒前
qiyi93发布了新的文献求助10
4秒前
prince发布了新的文献求助50
4秒前
5秒前
NovermberRain完成签到,获得积分10
5秒前
YingSuhui完成签到 ,获得积分10
5秒前
5秒前
Estrella完成签到,获得积分10
6秒前
huang完成签到,获得积分10
7秒前
chowjb完成签到,获得积分0
7秒前
寒冷班发布了新的文献求助10
7秒前
zhaoda发布了新的文献求助20
7秒前
7秒前
7秒前
湘之灵若发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助勤劳钧采纳,获得10
9秒前
健康的宛菡完成签到 ,获得积分10
9秒前
zz568完成签到,获得积分10
9秒前
hahahahaha完成签到,获得积分10
10秒前
苏哲完成签到,获得积分10
10秒前
大个应助祁淑娴采纳,获得10
10秒前
zj完成签到,获得积分10
10秒前
醉酒戏红尘完成签到 ,获得积分10
10秒前
11秒前
11秒前
Tiffany完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402166
求助须知:如何正确求助?哪些是违规求助? 4520720
关于积分的说明 14081778
捐赠科研通 4434524
什么是DOI,文献DOI怎么找? 2434397
邀请新用户注册赠送积分活动 1426632
关于科研通互助平台的介绍 1405383