马尔科夫蒙特卡洛
贝叶斯概率
可靠性(半导体)
统计
样本量测定
蒙特卡罗方法
贝叶斯估计量
结构方程建模
估计员
数学
计算机科学
对比度(视觉)
样品(材料)
数学优化
人工智能
色谱法
物理
量子力学
功率(物理)
化学
作者
Esther Ulitzsch,Oliver Lüdtke,Alexander Robitzsch
出处
期刊:Psychological Methods
[American Psychological Association]
日期:2021-12-20
卷期号:28 (3): 527-557
被引量:26
摘要
Small sample structural equation modeling (SEM) may exhibit serious estimation problems, such as failure to converge, inadmissible solutions, and unstable parameter estimates. A vast literature has compared the performance of different solutions for small sample SEM in contrast to unconstrained maximum likelihood (ML) estimation. Less is known, however, on the gains and pitfalls of different solutions in contrast to each other. Focusing on three current solutions-constrained ML, Bayesian methods using Markov chain Monte Carlo techniques, and fixed reliability single indicator (SI) approaches-we bridge this gap. When doing so, we evaluate the potential and boundaries of different parameterizations, constraints, and weakly informative prior distributions for improving the quality of the estimation procedure and stabilizing parameter estimates. The performance of all approaches is compared in a simulation study. Under conditions with low reliabilities, Bayesian methods without additional prior information by far outperform constrained ML in terms of accuracy of parameter estimates as well as the worst-performing fixed reliability SI approach and do not perform worse than the best-performing fixed reliability SI approach. Under conditions with high reliabilities, constrained ML shows good performance. Both constrained ML and Bayesian methods exhibit conservative to acceptable Type I error rates. Fixed reliability SI approaches are prone to undercoverage and severe inflation of Type I error rates. Stabilizing effects on Bayesian parameter estimates can be achieved even with mildly incorrect prior information. In an empirical example, we illustrate the practical importance of carefully choosing the method of analysis for small sample SEM. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
科研通智能强力驱动
Strongly Powered by AbleSci AI