Consensus achievement strategy of opinion dynamics based on deep reinforcement learning with time constraint

强化学习 计算机科学 马尔可夫决策过程 舆论 过程(计算) 约束(计算机辅助设计) 运筹学 交叉口(航空) 人工智能 管理科学 马尔可夫过程 法学 经济 数学 政治学 政治 统计 操作系统 工程类 航空航天工程 几何学
作者
Mingwei Wang,Decui Liang,Zeshui Xu
出处
期刊:Journal of the Operational Research Society [Palgrave Macmillan]
卷期号:73 (12): 2741-2755 被引量:4
标识
DOI:10.1080/01605682.2021.2015257
摘要

Group opinion often has an important influence on the development and decision-making of major events. However, there are existing two problems with group opinion: (1) As opinions evolve, group opinion may diverge sharply, which is not conducive to obtaining final decision opinion. (2) The evolution of opinions can also cause serious systemic biases in group, which can lead to a final decision that is far from the truth. Hence, this paper deeply investigates two important strategies of consensus boost and opinion guidance in opinion management. Meantime, considering the urgency of some decision-making problems, such as major public crisis events, opinion management process is also subject to time constraint. In this paper, we firstly formalize the minimum adjustment cost consensus boost and opinion guidance with time constraint as Markov decision process because of the intersection and evolution rule of opinions described by opinion dynamics holds Markov property. In this case, the minimum adjustment cost can improve the efficiency of opinion management. We further propose consensus boost algorithm and opinion guidance algorithm based on deep reinforcement learning, which availably mirrors human learning by exploring and receiving feedback from opinion dynamics. Then, by combining the above-mentioned algorithms, we design a new opinion management framework with deep reinforcement learning (OMFDRL). Finally, through comparison experiments, we verify the advantages of our proposed OMFDRL, which can provide managers with more flexible usage conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路的芝麻完成签到 ,获得积分10
1秒前
小松松完成签到,获得积分10
1秒前
冬猫完成签到,获得积分10
1秒前
华龙发布了新的文献求助20
3秒前
昏睡的沛柔完成签到 ,获得积分10
4秒前
肖耶啵完成签到,获得积分10
5秒前
秋思冬念完成签到 ,获得积分10
5秒前
Hightowerliu18完成签到,获得积分0
5秒前
专注的水壶完成签到 ,获得积分10
6秒前
Tomsen发布了新的文献求助10
7秒前
三块石头完成签到 ,获得积分10
7秒前
爆米花应助肖耶啵采纳,获得10
8秒前
zsc668完成签到 ,获得积分10
8秒前
wenjian完成签到,获得积分10
9秒前
zhanjl13完成签到,获得积分10
9秒前
lixy完成签到,获得积分10
9秒前
张庭豪完成签到,获得积分10
10秒前
刘珍荣完成签到,获得积分10
11秒前
Lucas应助整齐的小霜采纳,获得10
11秒前
11秒前
辛L完成签到 ,获得积分10
11秒前
优秀扬完成签到,获得积分10
12秒前
金色天际线完成签到,获得积分10
12秒前
Hello应助小松松采纳,获得10
12秒前
13秒前
007完成签到,获得积分10
13秒前
13秒前
勤恳立轩完成签到,获得积分10
13秒前
13秒前
淡然的晓旋完成签到,获得积分10
13秒前
小冠军完成签到,获得积分10
14秒前
辛L关注了科研通微信公众号
15秒前
xin完成签到,获得积分10
15秒前
shayla完成签到,获得积分20
15秒前
无为完成签到,获得积分10
15秒前
坤坤完成签到,获得积分10
16秒前
时差完成签到,获得积分20
16秒前
nikonikoni发布了新的文献求助10
17秒前
chen发布了新的文献求助10
17秒前
哆啦A梦完成签到,获得积分10
18秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830597
求助须知:如何正确求助?哪些是违规求助? 3372918
关于积分的说明 10475947
捐赠科研通 3092779
什么是DOI,文献DOI怎么找? 1702293
邀请新用户注册赠送积分活动 818913
科研通“疑难数据库(出版商)”最低求助积分说明 771153