大孢子
胚珠
生物
胼胝质
配子体
拟南芥
植物
减数分裂细胞
减数分裂
细胞生物学
进化生物学
遗传学
突变体
花粉
细胞壁
基因
作者
Jorge Lora,M. Herrero,Matthew R. Tucker,J.I. Hormaza
摘要
How and why specific plant cells adopt germline identity during ovule development has proved challenging to address, and the pathways that are active in the ovules of basal/early-divergent angiosperms possessing a multilayered nucellus are still unclear. Here, we compare megasporogenesis between two early-divergent angiosperms (Annona cherimola and Persea americana) and the evolutionarily derived Arabidopsis thaliana, studying the three-dimensional spatial position of the megaspore mother cell (MMC), the compositional details of the MMC wall and the location of PIN1 expression. Specific wall polymers distinguished the central position of the MMC and its meiotic products from surrounding tissues in early-divergent angiosperms, whereas, in A. thaliana, only callose (in mature MMCs) and arabinogalactan proteins (AGPs) (in megaspores) distinguished the germline. However, PIN1 expression, which regulates polar auxin transport, was observed around the MMC in the single-layer nucellus of A. thaliana and in the multilayered nucellus of A. cherimola, or close to the MMC in P. americana. The data reveal a similar microenvironment in relation to auxin during megasporogenesis in all three species. However, the different wall polymers that mark MMC fate in early-divergent angiosperms may reflect a specific response to mechanical stress during differentiation, or the specific recruitment of polymers to sustain MMC growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI