自回归模型
SETAR公司
非线性自回归外生模型
星型
数学
非线性系统
应用数学
系列(地层学)
蒙特卡罗方法
自回归积分移动平均
计量经济学
时间序列
统计
古生物学
物理
量子力学
生物
作者
Francisco Blasques,Siem Jan Koopman,André Lucas
出处
期刊:Social Science Research Network
[Social Science Electronic Publishing]
日期:2014-01-01
被引量:14
摘要
We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The resulting time-varying autoregressive model is formulated as a nonlinear autoregressive model and is compared with threshold and smooth-transition autoregressive models. We establish the information theoretic optimality of the score driven nonlinear autoregressive process and the asymptotic theory for maximum likelihood parameter estimation. The performance of our model in extracting the time-varying or the nonlinear dependence for finite samples is studied in a Monte Carlo exercise. In our empirical study we present the in-sample and out-of-sample performances of our model for a weekly time series of unemployment insurance claims.
科研通智能强力驱动
Strongly Powered by AbleSci AI