Spatiotemporal dynamics of the brain at rest — Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks

静息状态功能磁共振成像 脑电图 功能磁共振成像 地方政府 神经科学 大脑活动与冥想 同步脑电与功能磁共振 神经影像学 心理学 电生理学 大脑定位 血氧水平依赖性 默认模式网络 模式识别(心理学) 认知心理学
作者
Han Yuan,Vadim Zotev,Raquel Phillips,Wayne C. Drevets,Jerzy Bodurka
出处
期刊:NeuroImage [Elsevier BV]
卷期号:60 (4): 2062-2072 被引量:323
标识
DOI:10.1016/j.neuroimage.2012.02.031
摘要

Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~ 10 s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~ 100 ms) transient brain states reflected in EEG signals, that are referred to as “microstates”. To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These results extend our understanding of the electrophysiological signature of BOLD RSNs and demonstrate the intrinsic connection between the fast neuronal activity and slow hemodynamic fluctuations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助科研通管家采纳,获得30
刚刚
慕青应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
蓝多多应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
弦和发布了新的文献求助10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
风清扬应助科研通管家采纳,获得10
1秒前
1秒前
ewmmel发布了新的文献求助10
2秒前
5秒前
华仔应助沧海云采纳,获得10
5秒前
标致断缘发布了新的文献求助10
6秒前
8秒前
zz发布了新的文献求助30
8秒前
8秒前
8秒前
弦和完成签到,获得积分10
10秒前
小谢完成签到,获得积分10
10秒前
11秒前
11秒前
充电宝应助影月采纳,获得10
11秒前
12秒前
Liufgui给敬业乐群的求助进行了留言
13秒前
自由的飞发布了新的文献求助10
13秒前
xx完成签到,获得积分20
13秒前
14秒前
雪山飞龙发布了新的文献求助10
14秒前
啊嘻嘻发布了新的文献求助10
14秒前
ctgbg发布了新的文献求助50
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110416
求助须知:如何正确求助?哪些是违规求助? 3648678
关于积分的说明 11557184
捐赠科研通 3354142
什么是DOI,文献DOI怎么找? 1842784
邀请新用户注册赠送积分活动 908976
科研通“疑难数据库(出版商)”最低求助积分说明 825846