Spatiotemporal dynamics of the brain at rest — Exploring EEG microstates as electrophysiological signatures of BOLD resting state networks

静息状态功能磁共振成像 脑电图 功能磁共振成像 地方政府 神经科学 大脑活动与冥想 同步脑电与功能磁共振 神经影像学 心理学 电生理学 大脑定位 血氧水平依赖性 默认模式网络 模式识别(心理学) 认知心理学
作者
Han Yuan,Vadim Zotev,Raquel Phillips,Wayne C. Drevets,Jerzy Bodurka
出处
期刊:NeuroImage [Elsevier]
卷期号:60 (4): 2062-2072 被引量:323
标识
DOI:10.1016/j.neuroimage.2012.02.031
摘要

Neuroimaging research suggests that the resting cerebral physiology is characterized by complex patterns of neuronal activity in widely distributed functional networks. As studied using functional magnetic resonance imaging (fMRI) of the blood-oxygenation-level dependent (BOLD) signal, the resting brain activity is associated with slowly fluctuating hemodynamic signals (~ 10 s). More recently, multimodal functional imaging studies involving simultaneous acquisition of BOLD-fMRI and electroencephalography (EEG) data have suggested that the relatively slow hemodynamic fluctuations of some resting state networks (RSNs) evinced in the BOLD data are related to much faster (~ 100 ms) transient brain states reflected in EEG signals, that are referred to as “microstates”. To further elucidate the relationship between microstates and RSNs, we developed a fully data-driven approach that combines information from simultaneously recorded, high-density EEG and BOLD-fMRI data. Using independent component analysis (ICA) of the combined EEG and fMRI data, we identified thirteen microstates and ten RSNs that are organized independently in their temporal and spatial characteristics, respectively. We hypothesized that the intrinsic brain networks that are active at rest would be reflected in both the EEG data and the fMRI data. To test this hypothesis, the rapid fluctuations associated with each microstate were correlated with the BOLD-fMRI signal associated with each RSN. We found that each RSN was characterized further by a specific electrophysiological signature involving from one to a combination of several microstates. Moreover, by comparing the time course of EEG microstates to that of the whole-brain BOLD signal, on a multi-subject group level, we unraveled for the first time a set of microstate-associated networks that correspond to a range of previously described RSNs, including visual, sensorimotor, auditory, attention, frontal, visceromotor and default mode networks. These results extend our understanding of the electrophysiological signature of BOLD RSNs and demonstrate the intrinsic connection between the fast neuronal activity and slow hemodynamic fluctuations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
帆布鞋完成签到,获得积分10
1秒前
1秒前
共享精神应助木子采纳,获得10
1秒前
1秒前
1秒前
机智的安梦完成签到,获得积分10
2秒前
bzp发布了新的文献求助10
2秒前
2秒前
3秒前
Barney完成签到,获得积分10
4秒前
洛洛发布了新的文献求助10
4秒前
5秒前
5秒前
dungaway发布了新的文献求助10
6秒前
稳重的tutu发布了新的文献求助10
7秒前
8秒前
wang发布了新的文献求助10
8秒前
禧xi完成签到,获得积分10
8秒前
8秒前
学渣小Robert完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
隐形曼青应助如意明辉采纳,获得20
13秒前
。。。完成签到,获得积分10
13秒前
李爱国应助萝布蹲采纳,获得10
13秒前
13秒前
wind完成签到,获得积分10
13秒前
14秒前
研友_VZG7GZ应助淼淼采纳,获得10
14秒前
Owen应助涛ss采纳,获得10
14秒前
爆米花应助wang采纳,获得10
15秒前
小巧孤晴发布了新的文献求助10
16秒前
内向灵凡发布了新的文献求助10
16秒前
黄静发布了新的文献求助20
16秒前
。。。发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406899
求助须知:如何正确求助?哪些是违规求助? 4524554
关于积分的说明 14099190
捐赠科研通 4438431
什么是DOI,文献DOI怎么找? 2436250
邀请新用户注册赠送积分活动 1428249
关于科研通互助平台的介绍 1406340