分泌物
过氧化物酶
定向进化
酶
生物化学
信号肽
化学
酿酒酵母
过氧化物
动力学
酶动力学
高尔基体
蛋白酶
生物
基因
分子生物学
重组DNA
突变体
活动站点
内质网
物理
有机化学
量子力学
作者
Eva García-Ruiz,David González-Pérez,Francisco J. Ruiz‐Dueñas,Ángel T. Martı́nez,Miguel Alcalde
摘要
The VPs (versatile peroxidases) secreted by white-rot fungi are involved in the natural decay of lignin. In the present study, a fusion gene containing the VP from Pleurotus eryngii was subjected to six rounds of directed evolution, achieving a level of secretion in Saccharomyces cerevisiae (21 mg/l) as yet unseen for any ligninolytic peroxidase. The evolved variant for expression harboured four mutations and increased its total VP activity 129-fold. The signal leader processing by the STE13 protease at the Golgi compartment changed as a consequence of overexpression, retaining the additional N-terminal sequence Glu-Ala-Glu-Ala that enhanced secretion. The engineered N-terminally truncated variant displayed similar biochemical properties to those of the non-truncated counterpart in terms of kinetics, stability and spectroscopic features. Additional cycles of evolution raised the T50 8°C and significantly increased the enzyme's stability at alkaline pHs. In addition, the Km for H2O2 was enhanced up to 15-fold while the catalytic efficiency was maintained, and there was an improvement in peroxide stability (with half-lives for H2O2 of 43 min at a H2O2/enzyme molar ratio of 4000:1). Overall, the directed evolution approach described provides a set of strategies for selecting VPs with improvements in secretion, activity and stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI