注释
可视化
小桶
生物数据库
基因注释
背景(考古学)
本体论
微阵列数据库
情报检索
计算机科学
数据库
计算生物学
基因本体论
基因组
生物
微阵列分析技术
基因
数据挖掘
生物信息学
遗传学
古生物学
哲学
基因表达
认识论
作者
Glynn Dennis,Brad T. Sherman,Douglas A Hosack,Jun Yang,Wei Gao,H. Clifford Lane,Richard A. Lempicki
出处
期刊:Genome Biology
[BioMed Central]
日期:2003-04-03
卷期号:4 (5)
被引量:8810
标识
DOI:10.1186/gb-2003-4-5-p3
摘要
Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information.Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains.Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
科研通智能强力驱动
Strongly Powered by AbleSci AI