A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion

方位(导航) 断层(地质) 卷积神经网络 保险丝(电气) 信号(编程语言) 计算机科学 人工神经网络 加速度计 特征提取 人工智能 机器学习 控制工程 模式识别(心理学) 工程类 电气工程 地质学 地震学 操作系统 程序设计语言
作者
Duy-Tang Hoang,Hee‐Jun Kang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 3325-3333 被引量:264
标识
DOI:10.1109/tim.2019.2933119
摘要

Bearing fault diagnosis has extensively exploited vibration signals (VSs) because of their rich information about bearing health conditions. However, this approach is expensive because the measurement of VSs requires external accelerometers. Moreover, in machine systems that are inaccessible or unable to be installed in external sensors, the VS-based approach is impracticable. Otherwise, motor current signals (CSs) are easily measured by the inverters that are the available components of those systems. Therefore, the motor CS-based bearing fault diagnosis approach has attracted considerable attention from researchers. However, the performance of this approach is still not good as the VS-based approach, especially in the case of fault diagnosis for external bearings (the bearings that are installed outside of the electric motors). Accordingly, this article proposes a motor CS-based fault diagnosis method utilizing deep learning and information fusion (IF), which can be applied to external bearings in rotary machine systems. The proposed method uses raw signals from multiple phases of the motor current as direct input, and the features are extracted from the CSs of each phase. Then, each feature set is classified separately by a convolutional neural network (CNN). To enhance the classification accuracy, a novel decision-level IF technique is introduced to fuse information from all of the utilized CNNs. The problem of decision-level IF is transformed into a simple pattern classification task, which can be solved effectively by familiar supervised learning algorithms. The effectiveness of the proposed fault diagnosis method is verified through experiments carried out with actual bearing fault signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵翎365完成签到,获得积分10
2秒前
2012csc完成签到 ,获得积分0
4秒前
燕子完成签到,获得积分10
6秒前
6秒前
梓歆完成签到 ,获得积分10
9秒前
支雨泽完成签到,获得积分10
24秒前
SciGPT应助Hyy采纳,获得10
35秒前
46秒前
满意的念柏完成签到,获得积分10
47秒前
48秒前
岳小龙完成签到 ,获得积分10
54秒前
Moonflower完成签到,获得积分10
55秒前
fomo完成签到,获得积分10
56秒前
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
xuexin发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
喜悦的香之完成签到 ,获得积分10
1分钟前
追寻地坛发布了新的文献求助10
1分钟前
Hyy发布了新的文献求助10
1分钟前
Serein完成签到,获得积分10
1分钟前
1分钟前
1分钟前
心想事成完成签到 ,获得积分10
1分钟前
LJHUA完成签到,获得积分10
1分钟前
2分钟前
正直的松鼠完成签到 ,获得积分10
2分钟前
zcbb完成签到,获得积分10
2分钟前
2分钟前
聂青枫完成签到,获得积分10
2分钟前
nater3ver完成签到,获得积分10
2分钟前
Hiram完成签到,获得积分10
2分钟前
2分钟前
zcbb发布了新的文献求助10
2分钟前
nater2ver完成签到,获得积分10
2分钟前
书生也是小郎中完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043130
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994