Adversarial Attack and Defense on Graph Data: A Survey

对抗制 计算机科学 图形 理论计算机科学 稳健性(进化) 人工智能 数据科学 机器学习 生物化学 基因 化学
作者
Lichao Sun,Yingtong Dou,Carl Yang,Kai Zhang,Ji Wang,Philip S. Yu,Lifang He,Bo Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-20 被引量:226
标识
DOI:10.1109/tkde.2022.3201243
摘要

Deep neural networks (DNNs) have been widely applied to various applications,\nincluding image classification, text generation, audio recognition, and graph\ndata analysis. However, recent studies have shown that DNNs are vulnerable to\nadversarial attacks. Though there are several works about adversarial attack\nand defense strategies on domains such as images and natural language\nprocessing, it is still difficult to directly transfer the learned knowledge to\ngraph data due to its representation structure. Given the importance of graph\nanalysis, an increasing number of studies over the past few years have\nattempted to analyze the robustness of machine learning models on graph data.\nNevertheless, existing research considering adversarial behaviors on graph data\noften focuses on specific types of attacks with certain assumptions. In\naddition, each work proposes its own mathematical formulation, which makes the\ncomparison among different methods difficult. Therefore, this review is\nintended to provide an overall landscape of more than 100 papers on adversarial\nattack and defense strategies for graph data, and establish a unified\nformulation encompassing most graph adversarial learning models. Moreover, we\nalso compare different graph attacks and defenses along with their\ncontributions and limitations, as well as summarize the evaluation metrics,\ndatasets and future trends. We hope this survey can help fill the gap in the\nliterature and facilitate further development of this promising new field.\n

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZCR完成签到,获得积分10
1秒前
WHY发布了新的文献求助10
1秒前
2秒前
越越越耶完成签到,获得积分10
3秒前
rebubu应助负责的方盒采纳,获得10
3秒前
3秒前
娇气的笑蓝完成签到,获得积分10
4秒前
4秒前
欢喜的文轩完成签到 ,获得积分10
4秒前
亦犹未进发布了新的文献求助10
4秒前
完美世界应助海蓝云天采纳,获得10
5秒前
小米粥24完成签到,获得积分10
5秒前
5秒前
5秒前
aging00发布了新的文献求助10
5秒前
希希发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
5999完成签到,获得积分10
6秒前
zx发布了新的文献求助10
6秒前
111完成签到,获得积分10
6秒前
Nature_Science完成签到,获得积分10
7秒前
aka2012发布了新的文献求助10
8秒前
隐形曼青应助puzzledvi采纳,获得10
8秒前
DiJia发布了新的文献求助10
8秒前
8秒前
小米粥24发布了新的文献求助50
9秒前
9秒前
WHY完成签到,获得积分10
9秒前
9秒前
金子悠月完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
blackccf发布了新的文献求助30
12秒前
12秒前
12秒前
cooling完成签到,获得积分10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749029
求助须知:如何正确求助?哪些是违规求助? 5456131
关于积分的说明 15362419
捐赠科研通 4888546
什么是DOI,文献DOI怎么找? 2628508
邀请新用户注册赠送积分活动 1576865
关于科研通互助平台的介绍 1533626