清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

医学 免疫疗法 无线电技术 肿瘤科 CD8型 回顾性队列研究 PD-L1 癌症研究 内科学 生物标志物 免疫系统 免疫学 放射科 化学 生物化学
作者
Roger Sun,Elaine Johanna Limkin,Maria Vakalopoulou,Laurent Dercle,Stéphane Champiat,Shan Rong Han,Loïc Verlingue,David Brandão,Andrea Lancia,Samy Ammari,Antoine Hollebecque,Jean‐Yves Scoazec,Aurélien Marabelle,Christophe Massard,Jean‐Charles Soria,Charlotte Robert,Nikos Paragios,Éric Deutsch,Charles Ferté
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:19 (9): 1180-1191 被引量:1002
标识
DOI:10.1016/s1470-2045(18)30413-3
摘要

Summary

Background

Because responses of patients with cancer to immunotherapy can vary in success, innovative predictors of response to treatment are urgently needed to improve treatment outcomes. We aimed to develop and independently validate a radiomics-based biomarker of tumour-infiltrating CD8 cells in patients included in phase 1 trials of anti-programmed cell death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-L1) monotherapy. We also aimed to evaluate the association between the biomarker, and tumour immune phenotype and clinical outcomes of these patients.

Methods

In this retrospective multicohort study, we used four independent cohorts of patients with advanced solid tumours to develop and validate a radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration. To develop the radiomic signature of CD8 cells, we used the CT images and RNA sequencing data of 135 patients with advanced solid malignant tumours who had been enrolled into the MOSCATO trial between May 1, 2012, and March 31, 2016, in France (training set). The genomic data, which are based on the CD8B gene, were used to estimate the abundance of CD8 cells in the samples and data were then aligned with the images to generate the radiomic signatures. The concordance of the radiomic signature (primary endpoint) was validated in a Cancer Genome Atlas [TGCA] database dataset including 119 patients who had available baseline preoperative imaging data and corresponding transcriptomic data on June 30, 2017. From 84 input variables used for the machine-learning method (78 radiomic features, five location variables, and one technical variable), a radiomics-based predictor of the CD8 cell expression signature was built by use of machine learning (elastic-net regularised regression method). Two other independent cohorts of patients with advanced solid tumours were used to evaluate this predictor. The immune phenotype internal cohort (n=100), were randomly selected from the Gustave Roussy Cancer Campus database of patient medical records based on previously described, extreme tumour-immune phenotypes: immune-inflamed (with dense CD8 cell infiltration) or immune-desert (with low CD8 cell infiltration), irrespective of treatment delivered; these data were used to analyse the correlation of the immune phenotype with this biomarker. Finally, the immunotherapy-treated dataset (n=137) of patients recruited from Dec 1, 2011, to Jan 31, 2014, at the Gustave Roussy Cancer Campus, who had been treated with anti-PD-1 and anti-PD-L1 monotherapy in phase 1 trials, was used to assess the predictive value of this biomarker in terms of clinical outcome.

Findings

We developed a radiomic signature for CD8 cells that included eight variables, which was validated with the gene expression signature of CD8 cells in the TCGA dataset (area under the curve [AUC]=0·67; 95% CI 0·57–0·77; p=0·0019). In the cohort with assumed immune phenotypes, the signature was also able to discriminate inflamed tumours from immune-desert tumours (0·76; 0·66–0·86; p<0·0001). In patients treated with anti-PD-1 and PD-L1, a high baseline radiomic score (relative to the median) was associated with a higher proportion of patients who achieved an objective response at 3 months (vs those with progressive disease or stable disease; p=0·049) and a higher proportion of patients who had an objective response (vs those with progressive disease or stable disease; p=0·025) or stable disease (vs those with progressive disease; p=0·013) at 6 months. A high baseline radiomic score was also associated with improved overall survival in univariate (median overall survival 24·3 months in the high radiomic score group, 95% CI 18·63–42·1; vs 11·5 months in the low radiomic score group, 7·98–15·6; hazard ratio 0·58, 95% CI 0·39–0·87; p=0·0081) and multivariate analyses (0·52, 0·35–0·79; p=0·0022).

Interpretation

The radiomic signature of CD8 cells was validated in three independent cohorts. This imaging predictor provided a promising way to predict the immune phenotype of tumours and to infer clinical outcomes for patients with cancer who had been treated with anti-PD-1 and PD-L1. Our imaging biomarker could be useful in estimating CD8 cell count and predicting clinical outcomes of patients treated with immunotherapy, when validated by further prospective randomised trials.

Funding

Fondation pour la Recherche Médicale, and SIRIC-SOCRATE 2.0, French Society of Radiation Oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹国庆完成签到 ,获得积分10
1秒前
李马耀发布了新的文献求助10
1秒前
回首不再是少年完成签到,获得积分0
6秒前
默默的筝完成签到 ,获得积分10
7秒前
9秒前
y13333完成签到,获得积分10
9秒前
gnr2000发布了新的文献求助30
16秒前
努力退休小博士完成签到 ,获得积分10
20秒前
娇气的天亦完成签到,获得积分10
24秒前
YZ完成签到 ,获得积分10
30秒前
橙子是不是完成签到,获得积分10
35秒前
陌上之心完成签到 ,获得积分10
39秒前
gmc完成签到 ,获得积分10
49秒前
端庄洪纲完成签到 ,获得积分10
50秒前
李马耀完成签到,获得积分10
54秒前
白日焰火完成签到 ,获得积分10
1分钟前
jibenkun完成签到,获得积分10
1分钟前
Air完成签到 ,获得积分10
1分钟前
轩辕完成签到 ,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
lee完成签到 ,获得积分10
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
红箭烟雨完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
bee完成签到 ,获得积分10
2分钟前
2分钟前
kd发布了新的文献求助10
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
快乐随心完成签到 ,获得积分10
2分钟前
634301059完成签到 ,获得积分10
2分钟前
俊逸的白梦完成签到 ,获得积分0
2分钟前
荣浩宇完成签到 ,获得积分10
2分钟前
kd完成签到,获得积分10
3分钟前
绿色心情完成签到 ,获得积分10
3分钟前
求助完成签到,获得积分10
3分钟前
HXL完成签到 ,获得积分0
3分钟前
随风完成签到,获得积分10
3分钟前
Oliver完成签到 ,获得积分10
3分钟前
大轩完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924372
求助须知:如何正确求助?哪些是违规求助? 3469117
关于积分的说明 10955182
捐赠科研通 3198548
什么是DOI,文献DOI怎么找? 1767210
邀请新用户注册赠送积分活动 856716
科研通“疑难数据库(出版商)”最低求助积分说明 795597