Dilemma of Data Sharing Alliance: When Do Competing Personalizing and Non‐Personalizing Firms Share Data

业务 利润(经济学) 利润分享 产业组织 市场份额 质量(理念) 纳什均衡 产品(数学) 联盟 数据共享 营销 微观经济学 经济 财务 病理 替代医学 法学 哲学 认识论 医学 数学 政治学 几何学
作者
Abhijeet Ghoshal,Subodha Kumar,Vijay Mookerjee
出处
期刊:Production and Operations Management [Wiley]
卷期号:29 (8): 1918-1936 被引量:45
标识
DOI:10.1111/poms.12959
摘要

We analyze a case where two competing firms, a personalizing firm that makes product recommendations and a non‐personalizing firm that does not recommend products, compete with each other and may participate in a data sharing alliance (in which the non‐personalizing firm shares its data with the personalizing firm). The customer is strategic as she first visits the personalizing firm to find out what product to purchase among the recommended ones and purchases the product eventually from one of the firms. Overall, the customer distributes all her purchases across both the firms—she purchases from the personalizing firm to maintain a profile quality with the firm (to continue to obtain good recommendations) and from the non‐personalizing firm to benefit from the lower prices of that firm. We analyze this setup in a two‐stage game to find the subgame perfect Nash Equilibrium. In the first stage, firms decide to share data, or not. In the second stage they play a simultaneous move price game. We find that the non‐personalizing firm is always willing to share its data with the personalizing firm, but the personalizing firm uses it only when the learning rate influence dominates the profile influence. When the personalizing firm improves its system and both firms share data, its own profit always increases and under certain conditions the profit of the non‐personalizing firm also increases. Finally, social surplus may increase as well when firms share data. This result has important implications for the policy‐makers controlling information sharing between firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助舒心的期待采纳,获得10
刚刚
1秒前
diguohu完成签到,获得积分10
2秒前
刘晓丹发布了新的文献求助10
2秒前
panpanda发布了新的文献求助10
2秒前
眨眨眼发布了新的文献求助10
3秒前
老妖怪完成签到,获得积分10
3秒前
WBTT发布了新的文献求助10
4秒前
星辰大海应助认真代曼采纳,获得10
5秒前
Rondab应助可达采纳,获得10
5秒前
jxl完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
火星上惜天完成签到 ,获得积分10
8秒前
8秒前
锦鲤完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助无误采纳,获得10
9秒前
无奈雪珊发布了新的文献求助10
10秒前
屹男完成签到 ,获得积分10
10秒前
星辰大海应助刘晓丹采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
山城小丸完成签到,获得积分10
12秒前
小蘑菇应助1z采纳,获得10
13秒前
x潇潇完成签到,获得积分10
13秒前
Morch2021发布了新的文献求助10
13秒前
Wayi发布了新的文献求助10
13秒前
拼搏半梦发布了新的文献求助10
13秒前
panpanda完成签到,获得积分10
14秒前
merrcry完成签到,获得积分10
16秒前
16秒前
生动的天空完成签到,获得积分10
17秒前
17秒前
抗体小王完成签到,获得积分10
17秒前
Morch2021完成签到,获得积分10
19秒前
单身的溪流完成签到 ,获得积分10
20秒前
21秒前
21秒前
22秒前
Wayi完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982477
求助须知:如何正确求助?哪些是违规求助? 3526088
关于积分的说明 11230384
捐赠科研通 3263972
什么是DOI,文献DOI怎么找? 1801731
邀请新用户注册赠送积分活动 880000
科研通“疑难数据库(出版商)”最低求助积分说明 807767