已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Evaluating deep learning techniques for dynamic contrast-enhanced MRI in the diagnosis of breast cancer

动态增强MRI 计算机科学 动态对比度 对比度(视觉) 乳腺癌 人工智能 深度学习 乳房磁振造影 癌症 磁共振成像 放射科 医学 乳腺摄影术 内科学
作者
Rachel Anderson,Hui Li,Yu Ji,Peifang Liu,Maryellen L. Giger
出处
期刊:Medical Imaging 2018: Computer-Aided Diagnosis 卷期号:: 5-5 被引量:10
标识
DOI:10.1117/12.2512667
摘要

Deep learning has shown promise in the field of computer vision for image recognition. We evaluated two deep transfer learning techniques (feature extraction and fine-tuning) in the diagnosis of breast cancer compared to a lesion-based radiomics computer-aided diagnosis (CAD) method. The dataset included a total of 2006 breast lesions (1506 malignant and 500 benign) that were imaged with dynamic contrast-enhanced MRI. Pre-contrast, first post-contrast, and second post-contrast timepoint images for each lesion were combined to form an RGB image, which subsequently served as input to a VGG19 convolutional neural network (CNN) pre-trained on the ImageNet database. The first transfer learning technique was feature extraction conducted by extracting feature output from each of the five max-pooling layers in the trained CNN, average-pooling the features, performing feature reduction, and merging the CNN-features with a support vector machine in the classification of malignant and benign lesions. The second transfer learning method used a 64% training, 16% validation, and 20% testing dataset split in the fine-tuning of the final fully connected layers of the pretrained VGG19 to classify the images as malignant or benign. The performance of each of the three CAD methods were evaluated using receiver operating characteristic (ROC) analysis with area under the ROC curve (AUC) as the performance metric in the task of distinguishing between malignant and benign lesions. The performance of the radiomics CAD (AUC = 0.90) was significantly better than that of the CNN-feature-extraction (AUC = 0.84; p<0.0001), however, we failed to show a significant difference with the fine-tuning method (AUC = 0.86; p=0.1251), and thus, we conclude that transfer learning shows potential as a comparable computer-aided diagnosis technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌小小发布了新的文献求助20
刚刚
打打应助六月采纳,获得10
1秒前
爆米花应助ddd采纳,获得10
2秒前
2秒前
积极紫翠完成签到,获得积分10
5秒前
今后应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
coolkid应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
coolkid应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
SciGPT应助林二车娜姆采纳,获得10
7秒前
士之耽兮发布了新的文献求助10
8秒前
yy发布了新的文献求助30
9秒前
10秒前
futong发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助30
11秒前
阿怪完成签到 ,获得积分10
13秒前
14秒前
上官若男应助积极紫翠采纳,获得10
14秒前
15秒前
华仔应助yncjdxyjs采纳,获得10
15秒前
冰棒比冰冰完成签到 ,获得积分10
16秒前
fancy完成签到 ,获得积分10
16秒前
芒果好高发布了新的文献求助10
17秒前
17秒前
忘记密码发布了新的文献求助10
18秒前
19秒前
习习发布了新的文献求助10
20秒前
futong完成签到,获得积分20
20秒前
20秒前
六月完成签到,获得积分10
21秒前
22秒前
22秒前
赵科翊发布了新的文献求助10
23秒前
宋佳佳发布了新的文献求助10
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903699
求助须知:如何正确求助?哪些是违规求助? 3448561
关于积分的说明 10853462
捐赠科研通 3173979
什么是DOI,文献DOI怎么找? 1753682
邀请新用户注册赠送积分活动 847858
科研通“疑难数据库(出版商)”最低求助积分说明 790486