Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study

月经周期 可穿戴计算机 基础体温 机会之窗 心率 黄体期 医学 观察研究 生理学 物理医学与康复 物理疗法 激素 内科学 计算机科学 血压 实时计算 嵌入式系统
作者
Brianna M. Goodale,Mohaned Shilaih,Lisa Falco,Franziska Dammeier,Györgyi Hamvas,Brigitte Leeners
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:21 (4): e13404-e13404 被引量:99
标识
DOI:10.2196/13404
摘要

Previous research examining physiological changes across the menstrual cycle has considered biological responses to shifting hormones in isolation. Clinical studies, for example, have shown that women's nightly basal body temperature increases from 0.28 to 0.56 ˚C following postovulation progesterone production. Women's resting pulse rate, respiratory rate, and heart rate variability (HRV) are similarly elevated in the luteal phase, whereas skin perfusion decreases significantly following the fertile window's closing. Past research probed only 1 or 2 of these physiological features in a given study, requiring participants to come to a laboratory or hospital clinic multiple times throughout their cycle. Although initially designed for recreational purposes, wearable technology could enable more ambulatory studies of physiological changes across the menstrual cycle. Early research suggests that wearables can detect phase-based shifts in pulse rate and wrist skin temperature (WST). To date, previous work has studied these features separately, with the ability of wearables to accurately pinpoint the fertile window using multiple physiological parameters simultaneously yet unknown.In this study, we probed what phase-based differences a wearable bracelet could detect in users' WST, heart rate, HRV, respiratory rate, and skin perfusion. Drawing on insight from artificial intelligence and machine learning, we then sought to develop an algorithm that could identify the fertile window in real time.We conducted a prospective longitudinal study, recruiting 237 conception-seeking Swiss women. Participants wore the Ava bracelet (Ava AG) nightly while sleeping for up to a year or until they became pregnant. In addition to syncing the device to the corresponding smartphone app daily, women also completed an electronic diary about their activities in the past 24 hours. Finally, women took a urinary luteinizing hormone test at several points in a given cycle to determine the close of the fertile window. We assessed phase-based changes in physiological parameters using cross-classified mixed-effects models with random intercepts and random slopes. We then trained a machine learning algorithm to recognize the fertile window.We have demonstrated that wearable technology can detect significant, concurrent phase-based shifts in WST, heart rate, and respiratory rate (all P<.001). HRV and skin perfusion similarly varied across the menstrual cycle (all P<.05), although these effects only trended toward significance following a Bonferroni correction to maintain a family-wise alpha level. Our findings were robust to daily, individual, and cycle-level covariates. Furthermore, we developed a machine learning algorithm that can detect the fertile window with 90% accuracy (95% CI 0.89 to 0.92).Our contributions highlight the impact of artificial intelligence and machine learning's integration into health care. By monitoring numerous physiological parameters simultaneously, wearable technology uniquely improves upon retrospective methods for fertility awareness and enables the first real-time predictive model of ovulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咩咩完成签到,获得积分10
刚刚
1秒前
12334发布了新的文献求助10
1秒前
幽默无敌发布了新的文献求助200
1秒前
2秒前
2秒前
许雨青发布了新的文献求助10
2秒前
2秒前
笑笑发布了新的文献求助30
2秒前
2秒前
科研通AI2S应助自然月亮采纳,获得10
3秒前
3秒前
寒冷白开水应助1111采纳,获得10
3秒前
4秒前
4秒前
4秒前
877y发布了新的文献求助10
4秒前
浮游应助exosome采纳,获得10
5秒前
大胆浩然完成签到,获得积分10
6秒前
避橙完成签到,获得积分10
6秒前
科目三应助Ayuyu采纳,获得10
6秒前
高手如林完成签到,获得积分10
6秒前
茶柠应助一念往生采纳,获得10
6秒前
机灵花生完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助半山采纳,获得10
7秒前
听风发布了新的文献求助10
7秒前
科研疯狂者完成签到,获得积分10
7秒前
搬砖工完成签到,获得积分10
7秒前
科研通AI6应助利多卡因采纳,获得10
7秒前
深情安青应助火柴人采纳,获得10
7秒前
SIMBA发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
8秒前
北极光完成签到,获得积分10
8秒前
SWL发布了新的文献求助10
8秒前
8秒前
木子发布了新的文献求助10
8秒前
超级芹菜发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070872
求助须知:如何正确求助?哪些是违规求助? 4291937
关于积分的说明 13372261
捐赠科研通 4112335
什么是DOI,文献DOI怎么找? 2251967
邀请新用户注册赠送积分活动 1257071
关于科研通互助平台的介绍 1189769