已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting forced vital capacity (FVC) using support vector regression (SVR)

肺活量测定 肺活量 呼气 医学 慢性阻塞性肺病 金标准(测试) 回归分析 统计 物理疗法 数学 内科学 哮喘 肺功能 放射科 扩散能力
作者
Chenshuo Wang,XianXiang Chen,Rongjian Zhao,Zhengling He,Zhan Zhao,Qingyuan Zhan,Ting Yang,Zhen Fang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:40 (2): 025010-025010 被引量:5
标识
DOI:10.1088/1361-6579/ab031c
摘要

Spirometry, as the gold standard approach in the diagnosis of chronic obstructive pulmonary disease (COPD), has strict end of test (EOT) criteria (e.g. complete exhalation), which cannot be met by patients with compromised health states. Thus, significant parameters measured by spirometry, such as forced vital capacity (FVC), have limited accuracies. To address this issue, the present study aimed to develop models based on support vector regression (SVR) to predict values of FVC under the condition that the EOT criteria were not fully met.The prediction models for the quantification of FVC were developed based on SVR. A total of 354 subjects underwent conventional spirometry (CS), and the resulting data of forced expiratory volumes in 1 s (FEV1), peak expiratory flow (PEF), age and gender were used as input features, while the resulting values of the FVC were used as the target feature in the prediction models. Next, three prediction models (mixed model, normal model and abnormal model) were established according to the criterion in the diagnosis of COPD that a postbronchodilator shows an FEV1/FVC ratio lower than 0.70. Then, 35 subjects were recruited to be tested using both CS and a low-degree-of-EOT criteria spirometry (LDCS), which did not fully meet the EOT criteria of CS. In LDCS, subjects were allowed to terminate the procedure at their own will at any time after the technicians had assumed that both acceptable values of FEV1 and PEF had been obtained. Quantified values of FVC derived from both CS and LDCS were compared to validate the performances of the developed prediction models.The FVC prediction performances of the normal model and abnormal model were better than that of the mixed model. The root mean squared error are lower than 0.35 l and the accuracies are higher up to 95%. One-tailed t test results demonstrate that the absolute differences in the measured and predicted values are not significantly different from 0.15 l for both the abnormal model and the normal model.Our study shows the possibility of predicting FVC with acceptable precision in cases where the EOT criteria of spirometry were not fully met, which can be beneficial for patients who cannot or did not achieve full exhalation in spirometry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助玄轩采纳,获得10
刚刚
永不言弃的lx完成签到,获得积分10
2秒前
2秒前
深情安青应助憨批采纳,获得10
3秒前
wang发布了新的文献求助10
3秒前
糖果屋完成签到,获得积分10
3秒前
3秒前
杨惠子发布了新的文献求助10
4秒前
6秒前
7秒前
7秒前
8秒前
8秒前
使徒猫发布了新的文献求助10
9秒前
10秒前
时光静好完成签到,获得积分10
10秒前
着急的青枫应助刺猬采纳,获得10
11秒前
每天100次应助巴菲兔采纳,获得10
12秒前
12秒前
乐乐应助晶晶采纳,获得10
14秒前
14秒前
sddfafd发布了新的文献求助10
14秒前
潘昌祥发布了新的文献求助30
14秒前
wop111发布了新的文献求助10
15秒前
15秒前
15秒前
打打应助泡泡果采纳,获得10
17秒前
民科王聪发布了新的文献求助10
17秒前
19秒前
jackeyxu发布了新的文献求助10
20秒前
吞吞发布了新的文献求助10
22秒前
Lllwyy应助谜语采纳,获得200
23秒前
民科王聪完成签到,获得积分10
24秒前
憨批发布了新的文献求助10
25秒前
25秒前
小菲完成签到 ,获得积分10
26秒前
斯文败类应助刺猬采纳,获得10
27秒前
30秒前
30秒前
117发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4833105
求助须知:如何正确求助?哪些是违规求助? 4137620
关于积分的说明 12807008
捐赠科研通 3880856
什么是DOI,文献DOI怎么找? 2134441
邀请新用户注册赠送积分活动 1154582
关于科研通互助平台的介绍 1053114