Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3–xO4 Nanocages Derived from Metal–Organic Frameworks

纳米笼 催化作用 尖晶石 化学工程 吸附 材料科学 多孔性 比表面积 氧化钴 无机化学 化学 纳米技术 物理化学 有机化学 冶金 复合材料 工程类
作者
Lei Zhang,Liyi Shi,Lei Huang,Jianping Zhang,Ruihua Gao,Dengsong Zhang
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:4 (6): 1753-1763 被引量:524
标识
DOI:10.1021/cs401185c
摘要

Herein, we have rationally designed and originally developed a high-performance deNOx catalyst based on hollow porous MnxCo3–xO4 nanocages with a spinel structure thermally derived from nanocube-like metal–organic frameworks (Mn3[Co(CN)6]2·nH2O), which are synthesized via a self-assemble method. The as-prepared catalysts have been characterized systematically to elucidate their morphological structure and surface properties. As compared with conventional MnxCo3–xO4 nanoparticles, MnxCo3–xO4 nanocages possess a much better catalytic activity at low-temperature regions, higher N2 selectivity, more extensive operating-temperature window, higher stability, and SO2 tolerance. The feature of hollow and porous structures provides a larger surface area and more active sites to adsorb and activate reaction gases, resulting in the high catalytic activity. Moreover, the uniform distribution and strong interaction of manganese and cobalt oxide species not only enhance the catalytic cycle but also inhibit the formation of manganese sulfate, resulting in high catalytic cycle stability and good SO2 tolerance. In light of the various characterization results, the excellent deNOx performance of MnxCo3–xO4 nanocages can be attributed to the hollow and porous structures, the uniform distribution of active sites, as well as the strong interaction of manganese and cobalt oxide species. The excellent catalytic performance suggests that MnxCo3–xO4 nanocages are promising candidates for low-temperature deNOx catalysts. More importantly, the present study indicates that the hollow porous architectures and well-dispersed active components can effectively enhance the performance of catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放映安发布了新的文献求助10
刚刚
3秒前
呵呵发布了新的文献求助10
3秒前
赘婿应助DreamSeker采纳,获得10
4秒前
南南发布了新的文献求助10
5秒前
CipherSage应助疯狂的书竹采纳,获得10
7秒前
虚幻的小海豚完成签到,获得积分10
7秒前
7秒前
无限符号发布了新的文献求助10
7秒前
zgnh完成签到,获得积分10
8秒前
kajimi完成签到,获得积分10
9秒前
11秒前
嘻嘻发布了新的文献求助10
12秒前
ddffgz发布了新的文献求助10
12秒前
12秒前
共享精神应助haonanchen采纳,获得10
14秒前
14秒前
无限符号完成签到,获得积分20
14秒前
慕辰完成签到,获得积分10
15秒前
比蓝色更深完成签到,获得积分10
15秒前
BzForte发布了新的文献求助10
15秒前
CN发布了新的文献求助10
17秒前
17秒前
我是老大应助zq采纳,获得10
17秒前
17秒前
17秒前
简单以冬完成签到,获得积分10
17秒前
19秒前
19秒前
落后凝莲完成签到,获得积分10
20秒前
Akim应助ddffgz采纳,获得10
20秒前
快晴完成签到,获得积分10
20秒前
嘚嘚完成签到,获得积分10
20秒前
ww完成签到,获得积分10
21秒前
21秒前
caihong1发布了新的文献求助20
22秒前
科研痴发布了新的文献求助10
22秒前
22秒前
lxy应助大先生采纳,获得20
22秒前
23秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114515
求助须知:如何正确求助?哪些是违规求助? 3653029
关于积分的说明 11567520
捐赠科研通 3356986
什么是DOI,文献DOI怎么找? 1843910
邀请新用户注册赠送积分活动 909779
科研通“疑难数据库(出版商)”最低求助积分说明 826509