Multi-omics profiling predicts allograft function after lung transplantation

微生物群 肺移植 脂质体 代谢组 医学 支气管肺泡灌洗 移植 生物 免疫学 内科学 代谢组学 生物信息学 脂类学
作者
Martin L. Watzenboeck,Anna-Dorothea Gorki,Federica Quattrone,Riem Gawish,Stefan Schwarz,Christopher Lambers,Péter Jaksch,Karin Lakovits,Sophie Zahalka,Nina Rahimi,Philipp Starkl,Dörte Symmank,Tyler Artner,Céline Pattaroni,Nikolaus Fortelny,Kristaps Klavins,Florian Frommlet,Benjamin J. Marsland,Konrad Höetzenecker,Stefanie Widder,Sylvia Knapp
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:59 (2): 2003292-2003292 被引量:19
标识
DOI:10.1183/13993003.03292-2020
摘要

Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes.To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function.We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling.We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power.Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可爱多发布了新的文献求助10
8秒前
8秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
丘比特应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
JamesPei应助HD采纳,获得30
11秒前
科研通AI2S应助钱念波采纳,获得10
15秒前
16秒前
16秒前
黑黑发布了新的文献求助10
18秒前
可爱多完成签到,获得积分10
19秒前
嗯很好完成签到,获得积分20
20秒前
嗯很好发布了新的文献求助10
22秒前
WWWj发布了新的文献求助10
22秒前
辞却完成签到,获得积分10
23秒前
jenningseastera应助Bin_Liu采纳,获得10
24秒前
25秒前
26秒前
黑黑完成签到,获得积分20
28秒前
冰魂应助朱向阳采纳,获得20
30秒前
风声亦寒发布了新的文献求助10
31秒前
Zhuzhu完成签到 ,获得积分10
33秒前
34秒前
34秒前
34秒前
WWWj完成签到,获得积分20
37秒前
景清发布了新的文献求助10
39秒前
科研通AI5应助芷莯采纳,获得10
39秒前
Trent发布了新的文献求助10
39秒前
Endeavor完成签到,获得积分10
40秒前
李健应助嗯很好采纳,获得10
46秒前
生动映容发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782042
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10231993
捐赠科研通 3042473
什么是DOI,文献DOI怎么找? 1669990
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825