AI-driven platform enterprise maturity: from human led to machine governed

能力成熟度模型 成熟度(心理) 计算机科学 企业架构 知识管理 过程管理 人工智能 数据科学 建筑 工程类 心理学 艺术 发展心理学 软件 视觉艺术 程序设计语言
作者
Serge Yablonsky
出处
期刊:Kybernetes [Emerald Publishing Limited]
卷期号:50 (10): 2753-2789 被引量:26
标识
DOI:10.1108/k-06-2020-0384
摘要

Purpose To be more effective, artificial intelligence (AI) requires a broad overall view of the design and transformation of enterprise architecture and capabilities. Maturity models (MMs) are the recognized tools to identify strengths and weaknesses of certain domains of an organization. They consist of multiple, archetypal levels of maturity of a certain domain and can be used for organizational assessment and development. In the case of AI, quite a few numbers of MMs have been proposed. Generally, the links between AI technology, AI usage and organizational performance stay unclear. To address these gaps, this paper aims to introduce the complete details of the AI maturity model (AIMM) for AI-driven platform companies. The associated AI-Driven Platform Enterprise Maturity framework proposed here can help to achieve most of the AI-driven platform companies' objectives. Design/methodology/approach Qualitative research is performed in two stages. In the first stage, a review of the existing literature is performed to identify the types, barriers, drivers, challenges and opportunities of MMs in AI, Advanced Analytics and Big Data domains. In the second stage, a research framework is proposed to align company value chain with AI technologies and levels of the platform enterprise maturity. Findings The paper proposes a new five level AI-Driven Platform Enterprise Maturity framework by constructing a formal organizational value chain taxonomy model that explains a vast group of MM phenomena related with the AI-Driven Platform Enterprises. In addition, this study proposes a clear and precise description and structuring of the information in the multidimensional Platform, AI, Advanced Analytics and Big Data domains. The AI-Driven Platform Enterprise Maturity framework assists in identification, creation, assessment and disclosure research of AI-driven platform business organizations. Research limitations/implications This research is focused on the basic dimensions of AI value chain. The full reference model of AI consists of much more concepts. In the last few years, AI has achieved a notable drive that, if connected appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in machine learning, especially in deep neural networks, the entire community stands in front of the barrier of explainability. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models in industry. Our prospects lead toward the concept of a methodology for the large-scale implementation of AI methods in platform organizations with fairness, model explainability and accountability at its core. Practical implications AI-driven platform enterprise maturity framework can be used for better communicate to clients the value of AI capabilities through the lens of changing human-machine interactions and in the context of legal, ethical and societal norms. Social implications The authors discuss AI in the enterprise platform stack including talent platform, human capital management and recruiting. Originality/value The AI value chain and AI-Driven Platform Enterprise Maturity framework are original and represent an effective tools for assessing AI-driven platform enterprises.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助机智的寒天采纳,获得30
刚刚
彦祖发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
LL完成签到,获得积分10
2秒前
Bingcai发布了新的文献求助10
2秒前
2秒前
自信雨安完成签到,获得积分10
2秒前
英姑应助许愿星采纳,获得10
3秒前
大模型应助拓拓采纳,获得10
3秒前
浮游应助林婧采纳,获得10
4秒前
HHH发布了新的文献求助10
4秒前
康谨完成签到 ,获得积分10
4秒前
4秒前
Hua发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
dulu发布了新的文献求助10
5秒前
zzzhou完成签到,获得积分10
5秒前
淡淡晓槐发布了新的文献求助10
6秒前
6秒前
Hilda007发布了新的文献求助10
6秒前
妙柏发布了新的文献求助10
6秒前
石金胜完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
彦祖完成签到,获得积分10
8秒前
快点毕业完成签到,获得积分20
9秒前
快乐的翠柏完成签到,获得积分10
9秒前
9秒前
10秒前
zzzhou发布了新的文献求助10
10秒前
小摆发布了新的文献求助30
11秒前
sonicX发布了新的文献求助10
11秒前
11111111发布了新的文献求助10
12秒前
12秒前
牛牛发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5072617
求助须知:如何正确求助?哪些是违规求助? 4292947
关于积分的说明 13376665
捐赠科研通 4114155
什么是DOI,文献DOI怎么找? 2252906
邀请新用户注册赠送积分活动 1257594
关于科研通互助平台的介绍 1190476